用于旋转机械开放集域适应性故障诊断的未知类识别对抗网络

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ke Wu, Wei Xu, Qiming Shu, Wenjun Zhang, Xiaolong Cui, Jun Wu
{"title":"用于旋转机械开放集域适应性故障诊断的未知类识别对抗网络","authors":"Ke Wu, Wei Xu, Qiming Shu, Wenjun Zhang, Xiaolong Cui, Jun Wu","doi":"10.1007/s10845-024-02395-2","DOIUrl":null,"url":null,"abstract":"<p>Transfer learning methods have received abundant attention and extensively utilized in cross-domain fault diagnosis, which suppose that the label sets in the source and target domains are coincident. However, the open set domain adaptation problem which include new fault modes in the target domain is not well solved. To address the problem, an unknown-class recognition adversarial network (UCRAN) is proposed for the cross-domain fault diagnosis. Specifically, a three-dimensional discriminator is designed to conduct domain-invariant learning on the source domain, target known domain and target unknown domain. Then, an entropy minimization is introduced to determine the decision boundaries. Finally, a posteriori inference method is developed to calculate the open set recognition weight, which are used to adaptively weigh the importance between known class and unknown class. The effectiveness and practicability of the proposed UCRAN is validated by a series of experiments. The experimental results show that compared to other existing methods, the proposed UCRAN realizes better diagnosis performance in different domain transfer task.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unknown-class recognition adversarial network for open set domain adaptation fault diagnosis of rotating machinery\",\"authors\":\"Ke Wu, Wei Xu, Qiming Shu, Wenjun Zhang, Xiaolong Cui, Jun Wu\",\"doi\":\"10.1007/s10845-024-02395-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transfer learning methods have received abundant attention and extensively utilized in cross-domain fault diagnosis, which suppose that the label sets in the source and target domains are coincident. However, the open set domain adaptation problem which include new fault modes in the target domain is not well solved. To address the problem, an unknown-class recognition adversarial network (UCRAN) is proposed for the cross-domain fault diagnosis. Specifically, a three-dimensional discriminator is designed to conduct domain-invariant learning on the source domain, target known domain and target unknown domain. Then, an entropy minimization is introduced to determine the decision boundaries. Finally, a posteriori inference method is developed to calculate the open set recognition weight, which are used to adaptively weigh the importance between known class and unknown class. The effectiveness and practicability of the proposed UCRAN is validated by a series of experiments. The experimental results show that compared to other existing methods, the proposed UCRAN realizes better diagnosis performance in different domain transfer task.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02395-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02395-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

迁移学习方法在跨域故障诊断中受到广泛关注和应用,这种方法假设源域和目标域的标签集是重合的。然而,包含目标域中新故障模式的开放集域适应问题并没有得到很好的解决。针对这一问题,提出了一种用于跨域故障诊断的未知类识别对抗网络(UCRAN)。具体来说,设计了一个三维判别器,对源域、目标已知域和目标未知域进行域不变学习。然后,引入熵最小化来确定决策边界。最后,开发了一种后验推理方法来计算开放集识别权重,用于自适应地权衡已知类和未知类之间的重要性。一系列实验验证了所提出的 UCRAN 的有效性和实用性。实验结果表明,与其他现有方法相比,所提出的 UCRAN 在不同领域转移任务中实现了更好的诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unknown-class recognition adversarial network for open set domain adaptation fault diagnosis of rotating machinery

Unknown-class recognition adversarial network for open set domain adaptation fault diagnosis of rotating machinery

Transfer learning methods have received abundant attention and extensively utilized in cross-domain fault diagnosis, which suppose that the label sets in the source and target domains are coincident. However, the open set domain adaptation problem which include new fault modes in the target domain is not well solved. To address the problem, an unknown-class recognition adversarial network (UCRAN) is proposed for the cross-domain fault diagnosis. Specifically, a three-dimensional discriminator is designed to conduct domain-invariant learning on the source domain, target known domain and target unknown domain. Then, an entropy minimization is introduced to determine the decision boundaries. Finally, a posteriori inference method is developed to calculate the open set recognition weight, which are used to adaptively weigh the importance between known class and unknown class. The effectiveness and practicability of the proposed UCRAN is validated by a series of experiments. The experimental results show that compared to other existing methods, the proposed UCRAN realizes better diagnosis performance in different domain transfer task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信