I. V. Karpov, A. V. Ushakov, L. Yu. Fedorov, E. A. Goncharova, M. V. Brungardt
{"title":"真空-弧合成参数对氧化镍纳米粒子结构和磁性能的影响","authors":"I. V. Karpov, A. V. Ushakov, L. Yu. Fedorov, E. A. Goncharova, M. V. Brungardt","doi":"10.1134/S0036029523700258","DOIUrl":null,"url":null,"abstract":"<p>NiO nanoparticles are synthesized by vacuum arc sputtering. The effect of the synthesis parameters on the structural and magnetic properties of samples is studied. X-ray diffraction analysis confirms a polycrystalline structure of the nanoparticles prepared under all deposition conditions; however, the preferred orientation of crystallites depends on the deposition conditions. The magnetic behavior correlates with the crystallite size of NiO nanoparticles. Condensates with a particle size of 4–6 nm demonstrate superparamagnetic behavior, which changes into antiferromagnetic as the particle size increases.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Vacuum-Arc Synthesis Parameters on the Structure and Magnetic Properties of NiO Nanoparticles\",\"authors\":\"I. V. Karpov, A. V. Ushakov, L. Yu. Fedorov, E. A. Goncharova, M. V. Brungardt\",\"doi\":\"10.1134/S0036029523700258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>NiO nanoparticles are synthesized by vacuum arc sputtering. The effect of the synthesis parameters on the structural and magnetic properties of samples is studied. X-ray diffraction analysis confirms a polycrystalline structure of the nanoparticles prepared under all deposition conditions; however, the preferred orientation of crystallites depends on the deposition conditions. The magnetic behavior correlates with the crystallite size of NiO nanoparticles. Condensates with a particle size of 4–6 nm demonstrate superparamagnetic behavior, which changes into antiferromagnetic as the particle size increases.</p>\",\"PeriodicalId\":769,\"journal\":{\"name\":\"Russian Metallurgy (Metally)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Metallurgy (Metally)\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036029523700258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029523700258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of the Vacuum-Arc Synthesis Parameters on the Structure and Magnetic Properties of NiO Nanoparticles
NiO nanoparticles are synthesized by vacuum arc sputtering. The effect of the synthesis parameters on the structural and magnetic properties of samples is studied. X-ray diffraction analysis confirms a polycrystalline structure of the nanoparticles prepared under all deposition conditions; however, the preferred orientation of crystallites depends on the deposition conditions. The magnetic behavior correlates with the crystallite size of NiO nanoparticles. Condensates with a particle size of 4–6 nm demonstrate superparamagnetic behavior, which changes into antiferromagnetic as the particle size increases.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.