{"title":"基于普朗特-汤林森模型的单个微囊原子摩擦力分析表达式","authors":"Weike Yuan, Yue Ding, Gangfeng Wang, Xinrui Niu","doi":"10.1007/s10338-024-00488-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Prandtl–Tomlinson (PT) model has been widely applied to interpret the atomic friction mechanism of a single asperity. In this study, we present an approximate explicit expression for the friction force in the one-dimensional PT model under quasi-static conditions. The ‘stick–slip’ friction curves are first approximated properly by sawtooth-like lines, where the critical points before and after the ‘slip’ motion are described analytically in terms of a dimensionless parameter <i>η</i>. Following this, the average friction force is expressed in a closed form that remains continuous and valid for <i>η</i> > 1. Finally, an analytical expression for the load dependence of atomic friction of a single asperity is derived by connecting the parameter <i>η</i> with the normal load. With the parameters reported in experiments, our prediction shows good agreement with relevant experimental results.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 3","pages":"416 - 422"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Expression for the Atomic Friction of a Single Asperity Based on the Prandtl–Tomlinson Model\",\"authors\":\"Weike Yuan, Yue Ding, Gangfeng Wang, Xinrui Niu\",\"doi\":\"10.1007/s10338-024-00488-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Prandtl–Tomlinson (PT) model has been widely applied to interpret the atomic friction mechanism of a single asperity. In this study, we present an approximate explicit expression for the friction force in the one-dimensional PT model under quasi-static conditions. The ‘stick–slip’ friction curves are first approximated properly by sawtooth-like lines, where the critical points before and after the ‘slip’ motion are described analytically in terms of a dimensionless parameter <i>η</i>. Following this, the average friction force is expressed in a closed form that remains continuous and valid for <i>η</i> > 1. Finally, an analytical expression for the load dependence of atomic friction of a single asperity is derived by connecting the parameter <i>η</i> with the normal load. With the parameters reported in experiments, our prediction shows good agreement with relevant experimental results.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"37 3\",\"pages\":\"416 - 422\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00488-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00488-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
普朗特-汤林森(PT)模型已被广泛应用于解释单个凸面的原子摩擦机理。在本研究中,我们提出了准静态条件下一维 PT 模型中摩擦力的近似显式表达。首先用锯齿状线对 "粘滑 "摩擦曲线进行近似,其中 "滑动 "运动前后的临界点用无量纲参数η进行分析描述。随后,平均摩擦力以封闭形式表示,在 η > 1 时保持连续有效。最后,通过将参数 η 与法向载荷联系起来,得出了单个表面原子摩擦力随载荷变化的分析表达式。利用实验报告中的参数,我们的预测与相关实验结果显示出良好的一致性。
Analytical Expression for the Atomic Friction of a Single Asperity Based on the Prandtl–Tomlinson Model
The Prandtl–Tomlinson (PT) model has been widely applied to interpret the atomic friction mechanism of a single asperity. In this study, we present an approximate explicit expression for the friction force in the one-dimensional PT model under quasi-static conditions. The ‘stick–slip’ friction curves are first approximated properly by sawtooth-like lines, where the critical points before and after the ‘slip’ motion are described analytically in terms of a dimensionless parameter η. Following this, the average friction force is expressed in a closed form that remains continuous and valid for η > 1. Finally, an analytical expression for the load dependence of atomic friction of a single asperity is derived by connecting the parameter η with the normal load. With the parameters reported in experiments, our prediction shows good agreement with relevant experimental results.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables