Saulo Pomponet Oliveira, Luan Thanh Pham, Roman Pašteka
{"title":"利用莫洛佐夫差异原理对电位场数据的垂直导数进行正则处理","authors":"Saulo Pomponet Oliveira, Luan Thanh Pham, Roman Pašteka","doi":"10.1111/1365-2478.13534","DOIUrl":null,"url":null,"abstract":"<p>The calculation of the vertical derivatives of potential field methods can be carried out in a stable manner by Tikhonov regularization, but this procedure requires the appropriate selection of a regularization parameter. For this purpose, we introduce a criterion based on Morozov's discrepancy principle that uses a preliminary approximation given by the vertical derivative of the smoothed data. The smoothing may be performed by a physical or a mathematically based low-pass filter. The filtered data are computed only for estimating the regularization parameter; once it is found, we evaluate the regularized vertical derivative from the original data (not from the smoothed one) in the frequency domain. We verified from experiments with noise-corrupted synthetic data, as well as gravity and magnetic field data, that the regularized vertical derivative has about the same smoothness as the one obtained from filtered data, but true anomalies are more easily distinguished from noise and the shapes of the anomalies are better preserved.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization of vertical derivatives of potential field data using Morozov's discrepancy principle\",\"authors\":\"Saulo Pomponet Oliveira, Luan Thanh Pham, Roman Pašteka\",\"doi\":\"10.1111/1365-2478.13534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The calculation of the vertical derivatives of potential field methods can be carried out in a stable manner by Tikhonov regularization, but this procedure requires the appropriate selection of a regularization parameter. For this purpose, we introduce a criterion based on Morozov's discrepancy principle that uses a preliminary approximation given by the vertical derivative of the smoothed data. The smoothing may be performed by a physical or a mathematically based low-pass filter. The filtered data are computed only for estimating the regularization parameter; once it is found, we evaluate the regularized vertical derivative from the original data (not from the smoothed one) in the frequency domain. We verified from experiments with noise-corrupted synthetic data, as well as gravity and magnetic field data, that the regularized vertical derivative has about the same smoothness as the one obtained from filtered data, but true anomalies are more easily distinguished from noise and the shapes of the anomalies are better preserved.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13534\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13534","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Regularization of vertical derivatives of potential field data using Morozov's discrepancy principle
The calculation of the vertical derivatives of potential field methods can be carried out in a stable manner by Tikhonov regularization, but this procedure requires the appropriate selection of a regularization parameter. For this purpose, we introduce a criterion based on Morozov's discrepancy principle that uses a preliminary approximation given by the vertical derivative of the smoothed data. The smoothing may be performed by a physical or a mathematically based low-pass filter. The filtered data are computed only for estimating the regularization parameter; once it is found, we evaluate the regularized vertical derivative from the original data (not from the smoothed one) in the frequency domain. We verified from experiments with noise-corrupted synthetic data, as well as gravity and magnetic field data, that the regularized vertical derivative has about the same smoothness as the one obtained from filtered data, but true anomalies are more easily distinguished from noise and the shapes of the anomalies are better preserved.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.