{"title":"高相对表面粗糙度值对层流、过渡流、准湍流和湍流中传热和压降特性的影响","authors":"Marilize Everts, Faiyaad Mahomed","doi":"10.1007/s00231-024-03472-1","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the effect of large values of relative surface roughness on the heat transfer and pressure drop characteristics using simultaneously measured heat transfer and pressure drop data. Experiments were conducted using a horizontal circular tube with a base inner diameter of 5 mm and length of 4 m. One smooth and two rough tubes, with relative roughnesses of 0.04 and 0.11, were tested at different constant heat fluxes between Reynolds numbers of 100 and 8 500. Water was used as the test fluid and the Prandtl number varied between 3 and 7. Contrary to the trend in the Moody Chart, a significant increase in laminar friction factors with increasing surface roughness was observed. Both the friction factors and Nusselt numbers as functions of Reynolds number showed a clear upward and leftward shift with increasing surface roughness across the different flow regimes. Furthermore, the boundaries between the flow regimes were the same for the pressure drop and heat transfer results. The width of the transitional flow regime was narrower for rough tubes and had a differing trend. The quasi-turbulent and turbulent flow regimes occurred at lower Reynolds numbers for increasing roughness. When investigating the relationship between heat transfer and pressure drop, it was found that an increase in surface roughness favoured heat transfer in the quasi-turbulent flow regime. This is useful for rough tubes as the quasi-turbulent flow regime onsets early with regards to the Reynolds number in tubes with large roughnesses.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of high values of relative surface roughness on heat transfer and pressure drop characteristics in the laminar, transitional, quasi-turbulent and turbulent flow regimes\",\"authors\":\"Marilize Everts, Faiyaad Mahomed\",\"doi\":\"10.1007/s00231-024-03472-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the effect of large values of relative surface roughness on the heat transfer and pressure drop characteristics using simultaneously measured heat transfer and pressure drop data. Experiments were conducted using a horizontal circular tube with a base inner diameter of 5 mm and length of 4 m. One smooth and two rough tubes, with relative roughnesses of 0.04 and 0.11, were tested at different constant heat fluxes between Reynolds numbers of 100 and 8 500. Water was used as the test fluid and the Prandtl number varied between 3 and 7. Contrary to the trend in the Moody Chart, a significant increase in laminar friction factors with increasing surface roughness was observed. Both the friction factors and Nusselt numbers as functions of Reynolds number showed a clear upward and leftward shift with increasing surface roughness across the different flow regimes. Furthermore, the boundaries between the flow regimes were the same for the pressure drop and heat transfer results. The width of the transitional flow regime was narrower for rough tubes and had a differing trend. The quasi-turbulent and turbulent flow regimes occurred at lower Reynolds numbers for increasing roughness. When investigating the relationship between heat transfer and pressure drop, it was found that an increase in surface roughness favoured heat transfer in the quasi-turbulent flow regime. This is useful for rough tubes as the quasi-turbulent flow regime onsets early with regards to the Reynolds number in tubes with large roughnesses.</p>\",\"PeriodicalId\":12908,\"journal\":{\"name\":\"Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00231-024-03472-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03472-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
The effect of high values of relative surface roughness on heat transfer and pressure drop characteristics in the laminar, transitional, quasi-turbulent and turbulent flow regimes
This study investigated the effect of large values of relative surface roughness on the heat transfer and pressure drop characteristics using simultaneously measured heat transfer and pressure drop data. Experiments were conducted using a horizontal circular tube with a base inner diameter of 5 mm and length of 4 m. One smooth and two rough tubes, with relative roughnesses of 0.04 and 0.11, were tested at different constant heat fluxes between Reynolds numbers of 100 and 8 500. Water was used as the test fluid and the Prandtl number varied between 3 and 7. Contrary to the trend in the Moody Chart, a significant increase in laminar friction factors with increasing surface roughness was observed. Both the friction factors and Nusselt numbers as functions of Reynolds number showed a clear upward and leftward shift with increasing surface roughness across the different flow regimes. Furthermore, the boundaries between the flow regimes were the same for the pressure drop and heat transfer results. The width of the transitional flow regime was narrower for rough tubes and had a differing trend. The quasi-turbulent and turbulent flow regimes occurred at lower Reynolds numbers for increasing roughness. When investigating the relationship between heat transfer and pressure drop, it was found that an increase in surface roughness favoured heat transfer in the quasi-turbulent flow regime. This is useful for rough tubes as the quasi-turbulent flow regime onsets early with regards to the Reynolds number in tubes with large roughnesses.
期刊介绍:
This journal serves the circulation of new developments in the field of basic research of heat and mass transfer phenomena, as well as related material properties and their measurements. Thereby applications to engineering problems are promoted.
The journal is the traditional "Wärme- und Stoffübertragung" which was changed to "Heat and Mass Transfer" back in 1995.