Yueguang Ge, Shaolin Zhang, Yinghao Cai, Tao Lu, Haitao Wang, Xiaolong Hui, Shuo Wang
{"title":"基于本体的自主机器人任务处理框架","authors":"Yueguang Ge, Shaolin Zhang, Yinghao Cai, Tao Lu, Haitao Wang, Xiaolong Hui, Shuo Wang","doi":"10.3389/fnbot.2024.1401075","DOIUrl":null,"url":null,"abstract":"IntroductionIn recent years, the perceptual capabilities of robots have been significantly enhanced. However, the task execution of the robots still lacks adaptive capabilities in unstructured and dynamic environments.MethodsIn this paper, we propose an ontology based autonomous robot task processing framework (ARTProF), to improve the robot's adaptability within unstructured and dynamic environments. ARTProF unifies ontological knowledge representation, reasoning, and autonomous task planning and execution into a single framework. The interface between the knowledge base and neural network-based object detection is first introduced in ARTProF to improve the robot's perception capabilities. A knowledge-driven manipulation operator based on Robot Operating System (ROS) is then designed to facilitate the interaction between the knowledge base and the robot's primitive actions. Additionally, an operation similarity model is proposed to endow the robot with the ability to generalize to novel objects. Finally, a dynamic task planning algorithm, leveraging ontological knowledge, equips the robot with adaptability to execute tasks in unstructured and dynamic environments.ResultsExperimental results on real-world scenarios and simulations demonstrate the effectiveness and efficiency of the proposed ARTProF framework.DiscussionIn future work, we will focus on refining the ARTProF framework by integrating neurosymbolic inference.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"115 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology based autonomous robot task processing framework\",\"authors\":\"Yueguang Ge, Shaolin Zhang, Yinghao Cai, Tao Lu, Haitao Wang, Xiaolong Hui, Shuo Wang\",\"doi\":\"10.3389/fnbot.2024.1401075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionIn recent years, the perceptual capabilities of robots have been significantly enhanced. However, the task execution of the robots still lacks adaptive capabilities in unstructured and dynamic environments.MethodsIn this paper, we propose an ontology based autonomous robot task processing framework (ARTProF), to improve the robot's adaptability within unstructured and dynamic environments. ARTProF unifies ontological knowledge representation, reasoning, and autonomous task planning and execution into a single framework. The interface between the knowledge base and neural network-based object detection is first introduced in ARTProF to improve the robot's perception capabilities. A knowledge-driven manipulation operator based on Robot Operating System (ROS) is then designed to facilitate the interaction between the knowledge base and the robot's primitive actions. Additionally, an operation similarity model is proposed to endow the robot with the ability to generalize to novel objects. Finally, a dynamic task planning algorithm, leveraging ontological knowledge, equips the robot with adaptability to execute tasks in unstructured and dynamic environments.ResultsExperimental results on real-world scenarios and simulations demonstrate the effectiveness and efficiency of the proposed ARTProF framework.DiscussionIn future work, we will focus on refining the ARTProF framework by integrating neurosymbolic inference.\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1401075\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1401075","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Ontology based autonomous robot task processing framework
IntroductionIn recent years, the perceptual capabilities of robots have been significantly enhanced. However, the task execution of the robots still lacks adaptive capabilities in unstructured and dynamic environments.MethodsIn this paper, we propose an ontology based autonomous robot task processing framework (ARTProF), to improve the robot's adaptability within unstructured and dynamic environments. ARTProF unifies ontological knowledge representation, reasoning, and autonomous task planning and execution into a single framework. The interface between the knowledge base and neural network-based object detection is first introduced in ARTProF to improve the robot's perception capabilities. A knowledge-driven manipulation operator based on Robot Operating System (ROS) is then designed to facilitate the interaction between the knowledge base and the robot's primitive actions. Additionally, an operation similarity model is proposed to endow the robot with the ability to generalize to novel objects. Finally, a dynamic task planning algorithm, leveraging ontological knowledge, equips the robot with adaptability to execute tasks in unstructured and dynamic environments.ResultsExperimental results on real-world scenarios and simulations demonstrate the effectiveness and efficiency of the proposed ARTProF framework.DiscussionIn future work, we will focus on refining the ARTProF framework by integrating neurosymbolic inference.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.