{"title":"普拉唑霉素和其他氨基糖苷类药物对肺炎克雷伯氏菌耐多药菌株的体外活性","authors":"Alicja Sękowska","doi":"10.1038/s41429-024-00734-2","DOIUrl":null,"url":null,"abstract":"Plazomicin is a new aminoglycoside with broad-spectrum activity against multidrug-resistant strains. The aim of this study was to assess the susceptibility of the K. pneumoniae strains to plazomicin and other aminoglycosides. The activity of plazomicin in combination with ceftazidim-avibactam or meropenem with selected strains was evaluated. The study involved 60 ESβL-positive K. pneumoniae isolates and 50 carbapenemase-positive. The susceptibility to aminoglycosides was tested using the gradient strip. The in vitro activities of plazomicin and ceftazidim-avibactam or meropenem were evaluated using the MTSTM cross synergy method. Plazomicin exhibited high activity against K. pneumoniae with MICs ranging from 0.19 to 4 µg ml−1 for ESβL-positive strains and from 0.25 to 256 µg ml−1 for carbapenemase-positive strains. No antagonism was identified with any combinations. Plazomicin demonstrated excellent in vitro activity against analyzed strains, suggesting that this antibiotic may be an effective therapeutic option in the treatment of infections caused by MDR K. pneumoniae strains.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 8","pages":"548-551"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro activity of plazomicin and other aminoglycosides against Klebsiella pneumoniae multidrug-resistant strains\",\"authors\":\"Alicja Sękowska\",\"doi\":\"10.1038/s41429-024-00734-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plazomicin is a new aminoglycoside with broad-spectrum activity against multidrug-resistant strains. The aim of this study was to assess the susceptibility of the K. pneumoniae strains to plazomicin and other aminoglycosides. The activity of plazomicin in combination with ceftazidim-avibactam or meropenem with selected strains was evaluated. The study involved 60 ESβL-positive K. pneumoniae isolates and 50 carbapenemase-positive. The susceptibility to aminoglycosides was tested using the gradient strip. The in vitro activities of plazomicin and ceftazidim-avibactam or meropenem were evaluated using the MTSTM cross synergy method. Plazomicin exhibited high activity against K. pneumoniae with MICs ranging from 0.19 to 4 µg ml−1 for ESβL-positive strains and from 0.25 to 256 µg ml−1 for carbapenemase-positive strains. No antagonism was identified with any combinations. Plazomicin demonstrated excellent in vitro activity against analyzed strains, suggesting that this antibiotic may be an effective therapeutic option in the treatment of infections caused by MDR K. pneumoniae strains.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"77 8\",\"pages\":\"548-551\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00734-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00734-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
In vitro activity of plazomicin and other aminoglycosides against Klebsiella pneumoniae multidrug-resistant strains
Plazomicin is a new aminoglycoside with broad-spectrum activity against multidrug-resistant strains. The aim of this study was to assess the susceptibility of the K. pneumoniae strains to plazomicin and other aminoglycosides. The activity of plazomicin in combination with ceftazidim-avibactam or meropenem with selected strains was evaluated. The study involved 60 ESβL-positive K. pneumoniae isolates and 50 carbapenemase-positive. The susceptibility to aminoglycosides was tested using the gradient strip. The in vitro activities of plazomicin and ceftazidim-avibactam or meropenem were evaluated using the MTSTM cross synergy method. Plazomicin exhibited high activity against K. pneumoniae with MICs ranging from 0.19 to 4 µg ml−1 for ESβL-positive strains and from 0.25 to 256 µg ml−1 for carbapenemase-positive strains. No antagonism was identified with any combinations. Plazomicin demonstrated excellent in vitro activity against analyzed strains, suggesting that this antibiotic may be an effective therapeutic option in the treatment of infections caused by MDR K. pneumoniae strains.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.