Ye-Jin Kim, Yeon-Hwa Kim, Ye-Rim Shin, Su-Yeong Choi, Jeong-Ann Park, Hyun-Ouk Kim, Kwang Suk Lim, Suk-Jin Ha
{"title":"通过 FT-IR 和 FE-SEM 分析观察褶皱假单胞菌 SYp2123 对低密度聚乙烯的高效生物降解作用","authors":"Ye-Jin Kim, Yeon-Hwa Kim, Ye-Rim Shin, Su-Yeong Choi, Jeong-Ann Park, Hyun-Ouk Kim, Kwang Suk Lim, Suk-Jin Ha","doi":"10.1007/s12257-024-00108-3","DOIUrl":null,"url":null,"abstract":"<p>Plastics have been consistently produced for their practicality and convenience; however, unmanaged plastics often end up in the ocean and decompose into nano-plastics through photolytic decomposition and weathering, negatively affecting marine life. This can eventually affect humans via the food chain, highlighting the need for effective solutions. Microbial biodegradation has been proposed as a solution to minimize the impact of nano-plastics on the environment, and degradation byproducts can be used in microbial metabolic pathways. In this study, 57 bacterial strains were isolated and identified from a waste treatment facility. Bacterial strains with lipase activity were selected on Tween80 agar plates. Additionally, strains capable of growing on minimal salt agar plates supplemented with low-density polyethylene (LDPE) beads were selected. Incubation in a minimal salt medium with LDPE beads as the sole carbon source led to the selection of <i>Pseudomonas plecoglossicida</i> SYp2123, which is capable of degrading LDPE. This strain was subjected to high cell density culture, and Fourier-transform infrared spectroscopy revealed chemical changes on the surface of LDPE beads. Additionally, field-emission scanning electron microscopy confirmed substantial biodegradation of the surface. <i>P. plecoglossicida</i> SYp2123 was able to degrade LDPE beads. This discovery shows that <i>P. plecoglossicida</i> can potentially be used as an environmentally friendly approach for tackling issues associated with polyethylene waste. </p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient biodegradation of low-density polyethylene by Pseudomonas plecoglossicida SYp2123 was observed through FT-IR and FE-SEM analysis\",\"authors\":\"Ye-Jin Kim, Yeon-Hwa Kim, Ye-Rim Shin, Su-Yeong Choi, Jeong-Ann Park, Hyun-Ouk Kim, Kwang Suk Lim, Suk-Jin Ha\",\"doi\":\"10.1007/s12257-024-00108-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plastics have been consistently produced for their practicality and convenience; however, unmanaged plastics often end up in the ocean and decompose into nano-plastics through photolytic decomposition and weathering, negatively affecting marine life. This can eventually affect humans via the food chain, highlighting the need for effective solutions. Microbial biodegradation has been proposed as a solution to minimize the impact of nano-plastics on the environment, and degradation byproducts can be used in microbial metabolic pathways. In this study, 57 bacterial strains were isolated and identified from a waste treatment facility. Bacterial strains with lipase activity were selected on Tween80 agar plates. Additionally, strains capable of growing on minimal salt agar plates supplemented with low-density polyethylene (LDPE) beads were selected. Incubation in a minimal salt medium with LDPE beads as the sole carbon source led to the selection of <i>Pseudomonas plecoglossicida</i> SYp2123, which is capable of degrading LDPE. This strain was subjected to high cell density culture, and Fourier-transform infrared spectroscopy revealed chemical changes on the surface of LDPE beads. Additionally, field-emission scanning electron microscopy confirmed substantial biodegradation of the surface. <i>P. plecoglossicida</i> SYp2123 was able to degrade LDPE beads. This discovery shows that <i>P. plecoglossicida</i> can potentially be used as an environmentally friendly approach for tackling issues associated with polyethylene waste. </p>\",\"PeriodicalId\":8936,\"journal\":{\"name\":\"Biotechnology and Bioprocess Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioprocess Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12257-024-00108-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00108-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Efficient biodegradation of low-density polyethylene by Pseudomonas plecoglossicida SYp2123 was observed through FT-IR and FE-SEM analysis
Plastics have been consistently produced for their practicality and convenience; however, unmanaged plastics often end up in the ocean and decompose into nano-plastics through photolytic decomposition and weathering, negatively affecting marine life. This can eventually affect humans via the food chain, highlighting the need for effective solutions. Microbial biodegradation has been proposed as a solution to minimize the impact of nano-plastics on the environment, and degradation byproducts can be used in microbial metabolic pathways. In this study, 57 bacterial strains were isolated and identified from a waste treatment facility. Bacterial strains with lipase activity were selected on Tween80 agar plates. Additionally, strains capable of growing on minimal salt agar plates supplemented with low-density polyethylene (LDPE) beads were selected. Incubation in a minimal salt medium with LDPE beads as the sole carbon source led to the selection of Pseudomonas plecoglossicida SYp2123, which is capable of degrading LDPE. This strain was subjected to high cell density culture, and Fourier-transform infrared spectroscopy revealed chemical changes on the surface of LDPE beads. Additionally, field-emission scanning electron microscopy confirmed substantial biodegradation of the surface. P. plecoglossicida SYp2123 was able to degrade LDPE beads. This discovery shows that P. plecoglossicida can potentially be used as an environmentally friendly approach for tackling issues associated with polyethylene waste.
期刊介绍:
Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.