基于 SCSO-TCN 的区域供热系统热负荷预测

IF 0.9 Q4 ENERGY & FUELS
M. Gong, C. Han, J. Sun, Y. Zhao, S. Li, W. Xu
{"title":"基于 SCSO-TCN 的区域供热系统热负荷预测","authors":"M. Gong,&nbsp;C. Han,&nbsp;J. Sun,&nbsp;Y. Zhao,&nbsp;S. Li,&nbsp;W. Xu","doi":"10.1134/S0040601524040013","DOIUrl":null,"url":null,"abstract":"<p>Heat load prediction is crucial to the heat regulation of district heating systems (DHS). In heat load forecasting tasks, deep learning can frequently achieve more accurate model building. A deep learning algorithm, the temporal convolutional network (TCN), has been used for DHS heat load prediction. However, there are many hyperparameters for TCN. Manually tuning the TCN parameters cannot make the model have good performance. This study presents a hybrid method based on sand cat swarm optimization (SCSO) and TCN. The SCSO is used to optimize the hyperparameters (number of filters, filter size, dropout rate, and batch size) of TCN. To verify the effectiveness of SCSO-TCN, another two hybrid models, particle swarm optimization with TCN and the sparrow search algorithm with TCN, are established for comparison. The historical heat load data of three heat exchange stations in Tianjin is utilized for the testing experiments. The findings demonstrate that SCSO-TCN has higher predictive accuracy and better generalization ability than the PSO-TCN and SSA-TCN models.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 4","pages":"358 - 363"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Load Prediction of District Heating Systems Based on SCSO-TCN\",\"authors\":\"M. Gong,&nbsp;C. Han,&nbsp;J. Sun,&nbsp;Y. Zhao,&nbsp;S. Li,&nbsp;W. Xu\",\"doi\":\"10.1134/S0040601524040013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heat load prediction is crucial to the heat regulation of district heating systems (DHS). In heat load forecasting tasks, deep learning can frequently achieve more accurate model building. A deep learning algorithm, the temporal convolutional network (TCN), has been used for DHS heat load prediction. However, there are many hyperparameters for TCN. Manually tuning the TCN parameters cannot make the model have good performance. This study presents a hybrid method based on sand cat swarm optimization (SCSO) and TCN. The SCSO is used to optimize the hyperparameters (number of filters, filter size, dropout rate, and batch size) of TCN. To verify the effectiveness of SCSO-TCN, another two hybrid models, particle swarm optimization with TCN and the sparrow search algorithm with TCN, are established for comparison. The historical heat load data of three heat exchange stations in Tianjin is utilized for the testing experiments. The findings demonstrate that SCSO-TCN has higher predictive accuracy and better generalization ability than the PSO-TCN and SSA-TCN models.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"71 4\",\"pages\":\"358 - 363\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524040013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524040013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 热负荷预测对于区域供热系统(DHS)的热调节至关重要。在热负荷预测任务中,深度学习通常可以实现更精确的模型构建。一种深度学习算法--时序卷积网络(TCN)已被用于区域供热系统的热负荷预测。然而,TCN 有许多超参数。手动调整 TCN 参数并不能使模型具有良好的性能。本研究提出了一种基于沙猫群优化(SCSO)和 TCN 的混合方法。SCSO 用于优化 TCN 的超参数(过滤器数量、过滤器大小、滤除率和批量大小)。为了验证 SCSO-TCN 的有效性,还建立了另外两个混合模型进行比较,即粒子群优化与 TCN 和麻雀搜索算法与 TCN。测试实验采用了天津三个换热站的历史热负荷数据。结果表明,与 PSO-TCN 和 SSA-TCN 模型相比,SCSO-TCN 具有更高的预测精度和更好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heat Load Prediction of District Heating Systems Based on SCSO-TCN

Heat Load Prediction of District Heating Systems Based on SCSO-TCN

Heat Load Prediction of District Heating Systems Based on SCSO-TCN

Heat load prediction is crucial to the heat regulation of district heating systems (DHS). In heat load forecasting tasks, deep learning can frequently achieve more accurate model building. A deep learning algorithm, the temporal convolutional network (TCN), has been used for DHS heat load prediction. However, there are many hyperparameters for TCN. Manually tuning the TCN parameters cannot make the model have good performance. This study presents a hybrid method based on sand cat swarm optimization (SCSO) and TCN. The SCSO is used to optimize the hyperparameters (number of filters, filter size, dropout rate, and batch size) of TCN. To verify the effectiveness of SCSO-TCN, another two hybrid models, particle swarm optimization with TCN and the sparrow search algorithm with TCN, are established for comparison. The historical heat load data of three heat exchange stations in Tianjin is utilized for the testing experiments. The findings demonstrate that SCSO-TCN has higher predictive accuracy and better generalization ability than the PSO-TCN and SSA-TCN models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信