{"title":"基于脑电图的运动想象任务与注意力机制相结合的有效分类方法","authors":"Jixiang Li, Wuxiang Shi, Yurong Li","doi":"10.1007/s11571-024-10115-y","DOIUrl":null,"url":null,"abstract":"<p>Currently, electroencephalogram (EEG)-based motor imagery (MI) signals have been received extensive attention, which can assist disabled subjects to control wheelchair, automatic driving and other activities. However, EEG signals are easily affected by some factors, such as muscle movements, wireless devices, power line, etc., resulting in the low signal-to-noise ratios and the worse recognition results on EEG decoding. Therefore, it is crucial to develop a stable model for decoding MI-EEG signals. To address this issue and further improve the decoding performance for MI tasks, a hybrid structure combining convolutional neural networks and bidirectional long short-term memory (BLSTM) model, namely CBLSTM, is developed in this study to handle the various EEG-based MI tasks. Besides, the attention mechanism (AM) model is further adopted to adaptively assign the weight of EEG vital features and enhance the expression which beneficial to classification for MI tasks. First of all, the spatial features and the time series features are extracted by CBLSTM from preprocessed MI-EEG data, respectively. Meanwhile, more effective features information can be mined by the AM model, and the softmax function is utilized to recognize intention categories. Ultimately, the numerical results illustrate that the model presented achieves an average accuracy of 98.40% on the public physioNet dataset and faster training process for decoding MI tasks, which is superior to some other advanced models. Ablation experiment performed also verifies the effectiveness and feasibility of the developed model. Moreover, the established network model provides a good basis for the application of brain-computer interface in rehabilitation medicine.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"14 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective classification approach for EEG-based motor imagery tasks combined with attention mechanisms\",\"authors\":\"Jixiang Li, Wuxiang Shi, Yurong Li\",\"doi\":\"10.1007/s11571-024-10115-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, electroencephalogram (EEG)-based motor imagery (MI) signals have been received extensive attention, which can assist disabled subjects to control wheelchair, automatic driving and other activities. However, EEG signals are easily affected by some factors, such as muscle movements, wireless devices, power line, etc., resulting in the low signal-to-noise ratios and the worse recognition results on EEG decoding. Therefore, it is crucial to develop a stable model for decoding MI-EEG signals. To address this issue and further improve the decoding performance for MI tasks, a hybrid structure combining convolutional neural networks and bidirectional long short-term memory (BLSTM) model, namely CBLSTM, is developed in this study to handle the various EEG-based MI tasks. Besides, the attention mechanism (AM) model is further adopted to adaptively assign the weight of EEG vital features and enhance the expression which beneficial to classification for MI tasks. First of all, the spatial features and the time series features are extracted by CBLSTM from preprocessed MI-EEG data, respectively. Meanwhile, more effective features information can be mined by the AM model, and the softmax function is utilized to recognize intention categories. Ultimately, the numerical results illustrate that the model presented achieves an average accuracy of 98.40% on the public physioNet dataset and faster training process for decoding MI tasks, which is superior to some other advanced models. Ablation experiment performed also verifies the effectiveness and feasibility of the developed model. Moreover, the established network model provides a good basis for the application of brain-computer interface in rehabilitation medicine.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10115-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10115-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
目前,基于脑电图(EEG)的运动图像(MI)信号受到广泛关注,它可以帮助残疾人士控制轮椅、自动驾驶等活动。然而,脑电信号容易受到肌肉运动、无线设备、电源线等因素的影响,导致信噪比低,脑电解码的识别效果较差。因此,建立一个稳定的 MI-EEG 信号解码模型至关重要。为解决这一问题并进一步提高 MI 任务的解码性能,本研究开发了一种结合卷积神经网络和双向长短期记忆(BLSTM)模型的混合结构,即 CBLSTM,以处理各种基于脑电图的 MI 任务。此外,本研究还进一步采用了注意力机制(AM)模型来自适应地分配脑电图重要特征的权重,并增强有利于 MI 任务分类的表达。首先,利用 CBLSTM 分别从预处理后的 MI-EEG 数据中提取空间特征和时间序列特征。同时,AM 模型可以挖掘出更多有效的特征信息,并利用 softmax 函数识别意向类别。最终,数值结果表明,该模型在公共physioNet数据集上实现了98.40%的平均准确率,并且在解码MI任务时训练过程更快,优于其他一些先进模型。所进行的消融实验也验证了所开发模型的有效性和可行性。此外,所建立的网络模型还为脑机接口在康复医学中的应用提供了良好的基础。
An effective classification approach for EEG-based motor imagery tasks combined with attention mechanisms
Currently, electroencephalogram (EEG)-based motor imagery (MI) signals have been received extensive attention, which can assist disabled subjects to control wheelchair, automatic driving and other activities. However, EEG signals are easily affected by some factors, such as muscle movements, wireless devices, power line, etc., resulting in the low signal-to-noise ratios and the worse recognition results on EEG decoding. Therefore, it is crucial to develop a stable model for decoding MI-EEG signals. To address this issue and further improve the decoding performance for MI tasks, a hybrid structure combining convolutional neural networks and bidirectional long short-term memory (BLSTM) model, namely CBLSTM, is developed in this study to handle the various EEG-based MI tasks. Besides, the attention mechanism (AM) model is further adopted to adaptively assign the weight of EEG vital features and enhance the expression which beneficial to classification for MI tasks. First of all, the spatial features and the time series features are extracted by CBLSTM from preprocessed MI-EEG data, respectively. Meanwhile, more effective features information can be mined by the AM model, and the softmax function is utilized to recognize intention categories. Ultimately, the numerical results illustrate that the model presented achieves an average accuracy of 98.40% on the public physioNet dataset and faster training process for decoding MI tasks, which is superior to some other advanced models. Ablation experiment performed also verifies the effectiveness and feasibility of the developed model. Moreover, the established network model provides a good basis for the application of brain-computer interface in rehabilitation medicine.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.