O. V. Nikulenkova, A. E. Krupnin, Yu. D. Zagoskin, S. N. Malakhov, N. M. Kuznetsov, S. N. Chvalun
{"title":"基于二醋酸纤维素的多孔颗粒力学性能的计算与实验研究","authors":"O. V. Nikulenkova, A. E. Krupnin, Yu. D. Zagoskin, S. N. Malakhov, N. M. Kuznetsov, S. N. Chvalun","doi":"10.1134/S2635167623600785","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical behavior of porous particles of various diameters obtained by the cryolyophilization drying of frozen droplets of 1-wt % cellulose diacetate solution in 1,4-dioxane are studied. The morphology of the particles is visualized by scanning electron microscopy. It is shown that the particles have a predominantly spherical shape and a branched porous structure. The elastic and tangent moduli, Poisson’s ratio, and yield strength of the particle material are determined through mechanical tests of individual particles compressed between parallel plates. The results are then used to solve the reverse-engineering problem using the finite-element method. A bilinear stress-strain diagram taking into account the plastic properties of the particle material is obtained. Verification of the obtained model was carried out in a similar experiment upon the compression of particles of a different diameter.</p></div>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"18 1 supplement","pages":"S110 - S115"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational and Experimental Study of the Mechanical Properties of Porous Particles Based on Cellulose Diacetate\",\"authors\":\"O. V. Nikulenkova, A. E. Krupnin, Yu. D. Zagoskin, S. N. Malakhov, N. M. Kuznetsov, S. N. Chvalun\",\"doi\":\"10.1134/S2635167623600785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical behavior of porous particles of various diameters obtained by the cryolyophilization drying of frozen droplets of 1-wt % cellulose diacetate solution in 1,4-dioxane are studied. The morphology of the particles is visualized by scanning electron microscopy. It is shown that the particles have a predominantly spherical shape and a branched porous structure. The elastic and tangent moduli, Poisson’s ratio, and yield strength of the particle material are determined through mechanical tests of individual particles compressed between parallel plates. The results are then used to solve the reverse-engineering problem using the finite-element method. A bilinear stress-strain diagram taking into account the plastic properties of the particle material is obtained. Verification of the obtained model was carried out in a similar experiment upon the compression of particles of a different diameter.</p></div>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"18 1 supplement\",\"pages\":\"S110 - S115\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2635167623600785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167623600785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Computational and Experimental Study of the Mechanical Properties of Porous Particles Based on Cellulose Diacetate
The mechanical behavior of porous particles of various diameters obtained by the cryolyophilization drying of frozen droplets of 1-wt % cellulose diacetate solution in 1,4-dioxane are studied. The morphology of the particles is visualized by scanning electron microscopy. It is shown that the particles have a predominantly spherical shape and a branched porous structure. The elastic and tangent moduli, Poisson’s ratio, and yield strength of the particle material are determined through mechanical tests of individual particles compressed between parallel plates. The results are then used to solve the reverse-engineering problem using the finite-element method. A bilinear stress-strain diagram taking into account the plastic properties of the particle material is obtained. Verification of the obtained model was carried out in a similar experiment upon the compression of particles of a different diameter.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.