{"title":"用于切割铝和芳纶(凯夫拉)蜂窝板的超声波工具仿真","authors":"A. A. Vjuginova, S. N. Vjuginov, A. A. Novik","doi":"10.1134/S1063771023601139","DOIUrl":null,"url":null,"abstract":"<p>Honeycomb panels made of aluminum and composite materials—aramid, or Kevlar—are widely used in aviation, space, automotive, and other fields due to their unique characteristics: high strength and rigidity, low density, and good thermal insulation properties. However the mechanical processing of products made of honeycomb materials faces several difficulties, and one of the technologies that effectively solves the problems of cutting products made of honeycomb materials is ultrasonic cutting. In this paper, the finite element method is used to study the frequency properties necessary for designing tools for ultrasonic cutting of products made of honeycomb materials with operating frequencies around 20 kHz and various geometric parameters for cutting different variants of honeycomb constructions. The results of analyzing the wave dimensions of specialized ultrasonic triangular and disk-type instruments depending on geometry features are shown, along with the experimental results for a number of developed variants.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 1","pages":"189 - 193"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Ultrasonic Tools for Cutting Honeycomb Panels Made of Aluminum and Aramid (Kevlar)\",\"authors\":\"A. A. Vjuginova, S. N. Vjuginov, A. A. Novik\",\"doi\":\"10.1134/S1063771023601139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Honeycomb panels made of aluminum and composite materials—aramid, or Kevlar—are widely used in aviation, space, automotive, and other fields due to their unique characteristics: high strength and rigidity, low density, and good thermal insulation properties. However the mechanical processing of products made of honeycomb materials faces several difficulties, and one of the technologies that effectively solves the problems of cutting products made of honeycomb materials is ultrasonic cutting. In this paper, the finite element method is used to study the frequency properties necessary for designing tools for ultrasonic cutting of products made of honeycomb materials with operating frequencies around 20 kHz and various geometric parameters for cutting different variants of honeycomb constructions. The results of analyzing the wave dimensions of specialized ultrasonic triangular and disk-type instruments depending on geometry features are shown, along with the experimental results for a number of developed variants.</p>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"70 1\",\"pages\":\"189 - 193\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771023601139\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023601139","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Simulation of Ultrasonic Tools for Cutting Honeycomb Panels Made of Aluminum and Aramid (Kevlar)
Honeycomb panels made of aluminum and composite materials—aramid, or Kevlar—are widely used in aviation, space, automotive, and other fields due to their unique characteristics: high strength and rigidity, low density, and good thermal insulation properties. However the mechanical processing of products made of honeycomb materials faces several difficulties, and one of the technologies that effectively solves the problems of cutting products made of honeycomb materials is ultrasonic cutting. In this paper, the finite element method is used to study the frequency properties necessary for designing tools for ultrasonic cutting of products made of honeycomb materials with operating frequencies around 20 kHz and various geometric parameters for cutting different variants of honeycomb constructions. The results of analyzing the wave dimensions of specialized ultrasonic triangular and disk-type instruments depending on geometry features are shown, along with the experimental results for a number of developed variants.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.