Yulia V. Bertsova, Marina V. Serebryakova, Vladimir A. Bogachev, Alexander A. Baykov, Alexander V. Bogachev
{"title":"海洋细菌木希旺氏菌厌氧电子传递链的丙烯酸酯还原酶","authors":"Yulia V. Bertsova, Marina V. Serebryakova, Vladimir A. Bogachev, Alexander A. Baykov, Alexander V. Bogachev","doi":"10.1134/S0006297924040096","DOIUrl":null,"url":null,"abstract":"<p>Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium <i>Shewanella woodyi</i>. When the periplasmic proteins of <i>S. woodyi</i> were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of <i>S. woodyi</i> <i>ard</i>A gene (<i>swoo</i>_0275) in <i>Shewanella oneidensis</i> MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the <i>ard</i>A gene was co-expressed with an <i>ard</i>B gene (<i>swoo</i>_0276). Together, these genes encode flavocytochrome <i>c</i> ArdAB, which is thus responsible for acrylate reduction in <i>S. woodyi</i> cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced <i>ard</i>A gene expression in <i>S. woodyi</i> under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in <i>S. woodyi</i> and, possibly, other marine bacteria.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acrylate Reductase of an Anaerobic Electron Transport Chain of the Marine Bacterium Shewanella woodyi\",\"authors\":\"Yulia V. Bertsova, Marina V. Serebryakova, Vladimir A. Bogachev, Alexander A. Baykov, Alexander V. Bogachev\",\"doi\":\"10.1134/S0006297924040096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium <i>Shewanella woodyi</i>. When the periplasmic proteins of <i>S. woodyi</i> were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of <i>S. woodyi</i> <i>ard</i>A gene (<i>swoo</i>_0275) in <i>Shewanella oneidensis</i> MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the <i>ard</i>A gene was co-expressed with an <i>ard</i>B gene (<i>swoo</i>_0276). Together, these genes encode flavocytochrome <i>c</i> ArdAB, which is thus responsible for acrylate reduction in <i>S. woodyi</i> cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced <i>ard</i>A gene expression in <i>S. woodyi</i> under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in <i>S. woodyi</i> and, possibly, other marine bacteria.</p>\",\"PeriodicalId\":483,\"journal\":{\"name\":\"Biochemistry (Moscow)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow)\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006297924040096\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0006297924040096","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Acrylate Reductase of an Anaerobic Electron Transport Chain of the Marine Bacterium Shewanella woodyi
Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyiardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.
期刊介绍:
Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).