Jing Xie, Meng-Wei Kan, Simon J. de Veer, Conan Wang, David J. Craik
{"title":"拓展环苷酸药物应用的显示技术","authors":"Jing Xie, Meng-Wei Kan, Simon J. de Veer, Conan Wang, David J. Craik","doi":"10.1002/ijch.202400010","DOIUrl":null,"url":null,"abstract":"<p>Cyclotides are ultra-stable peptides originally discovered in plants based on their medicinal applications. Their natural function is as host defence agents. They are amenable to chemical synthesis for use as scaffolds for drug design applications. Cyclotides comprise ~30 amino acids and in addition to having a head-to-tail cyclic backbone, incorporate six conserved cystine residues connected in a cystine knot motif. The cyclic backbone and cystine knot contribute to their exceptional resistance to proteases or thermal denaturation, making them useful scaffolds for drug design applications. The backbone segments, or loops, between the conserved cysteine residues are amenable to combinatorial variation in native cyclotides and have also been used to incorporate selected bioactive peptide epitopes into a range of synthetic cyclotides and cyclotide-like scaffolds. In the past this was largely done via low throughput structure-based design approaches, but the discovery of novel cyclotide binders has been greatly enhanced by the use of combinatorial display approaches on cyclotide scaffolds using phage, bacterial, yeast and mRNA technologies, as reviewed herein.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400010","citationCount":"0","resultStr":"{\"title\":\"Display Technologies for Expanding the Pharmaceutical Applications of Cyclotides\",\"authors\":\"Jing Xie, Meng-Wei Kan, Simon J. de Veer, Conan Wang, David J. Craik\",\"doi\":\"10.1002/ijch.202400010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cyclotides are ultra-stable peptides originally discovered in plants based on their medicinal applications. Their natural function is as host defence agents. They are amenable to chemical synthesis for use as scaffolds for drug design applications. Cyclotides comprise ~30 amino acids and in addition to having a head-to-tail cyclic backbone, incorporate six conserved cystine residues connected in a cystine knot motif. The cyclic backbone and cystine knot contribute to their exceptional resistance to proteases or thermal denaturation, making them useful scaffolds for drug design applications. The backbone segments, or loops, between the conserved cysteine residues are amenable to combinatorial variation in native cyclotides and have also been used to incorporate selected bioactive peptide epitopes into a range of synthetic cyclotides and cyclotide-like scaffolds. In the past this was largely done via low throughput structure-based design approaches, but the discovery of novel cyclotide binders has been greatly enhanced by the use of combinatorial display approaches on cyclotide scaffolds using phage, bacterial, yeast and mRNA technologies, as reviewed herein.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400010\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400010","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Display Technologies for Expanding the Pharmaceutical Applications of Cyclotides
Cyclotides are ultra-stable peptides originally discovered in plants based on their medicinal applications. Their natural function is as host defence agents. They are amenable to chemical synthesis for use as scaffolds for drug design applications. Cyclotides comprise ~30 amino acids and in addition to having a head-to-tail cyclic backbone, incorporate six conserved cystine residues connected in a cystine knot motif. The cyclic backbone and cystine knot contribute to their exceptional resistance to proteases or thermal denaturation, making them useful scaffolds for drug design applications. The backbone segments, or loops, between the conserved cysteine residues are amenable to combinatorial variation in native cyclotides and have also been used to incorporate selected bioactive peptide epitopes into a range of synthetic cyclotides and cyclotide-like scaffolds. In the past this was largely done via low throughput structure-based design approaches, but the discovery of novel cyclotide binders has been greatly enhanced by the use of combinatorial display approaches on cyclotide scaffolds using phage, bacterial, yeast and mRNA technologies, as reviewed herein.
期刊介绍:
The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry.
The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH.
The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.