{"title":"监测大气表层温室气体的双通道红外激光雷达的概念","authors":"S. V. Yakovlev, S. A. Sadovnikov, N. S. Kravtsova","doi":"10.1134/S0030400X24700309","DOIUrl":null,"url":null,"abstract":"<p>The results of calculating the atmospheric transmission spectrum and modeling lidar signals in the informative range of greenhouse gas sounding (CO<sub>2</sub> and H<sub>2</sub>O) on horizontal tropospheric paths using the two-channel infrared lidar system under development are presented. It is shown that the lidar system operation spectral range of 4878–4894 cm<sup>–1</sup> (2043–2050 nm) is preferable for simultaneous probing of CO<sub>2</sub> and H<sub>2</sub>O. In this range, the level of lidar signals lies in the range of 10<sup>–6</sup>–10<sup>–10</sup> W and exceeds the equivalent power photodetector noise. Based on the results of the calculations, the technical appearance of the developed two-channel infrared lidar system is determined.</p>","PeriodicalId":723,"journal":{"name":"Optics and Spectroscopy","volume":"132 1","pages":"35 - 40"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Concept of a Two-Channel Infrared Lidar for Monitoring Greenhouse Gases in the Surface Layer of the Atmosphere\",\"authors\":\"S. V. Yakovlev, S. A. Sadovnikov, N. S. Kravtsova\",\"doi\":\"10.1134/S0030400X24700309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of calculating the atmospheric transmission spectrum and modeling lidar signals in the informative range of greenhouse gas sounding (CO<sub>2</sub> and H<sub>2</sub>O) on horizontal tropospheric paths using the two-channel infrared lidar system under development are presented. It is shown that the lidar system operation spectral range of 4878–4894 cm<sup>–1</sup> (2043–2050 nm) is preferable for simultaneous probing of CO<sub>2</sub> and H<sub>2</sub>O. In this range, the level of lidar signals lies in the range of 10<sup>–6</sup>–10<sup>–10</sup> W and exceeds the equivalent power photodetector noise. Based on the results of the calculations, the technical appearance of the developed two-channel infrared lidar system is determined.</p>\",\"PeriodicalId\":723,\"journal\":{\"name\":\"Optics and Spectroscopy\",\"volume\":\"132 1\",\"pages\":\"35 - 40\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0030400X24700309\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0030400X24700309","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 介绍了利用正在开发的双通道红外激光雷达系统计算对流层水平路径上温室气体(CO2 和 H2O)探测信息范围内的大气传输谱和激光雷达信号建模的结果。结果表明,激光雷达系统的工作光谱范围为 4878-4894 cm-1(2043-2050 nm),是同时探测 CO2 和 H2O 的理想选择。在这一范围内,激光雷达信号水平在 10-6-10-10 W 之间,超过了等效功率光电探测器噪声。根据计算结果,确定了所开发的双通道红外激光雷达系统的技术外观。
The Concept of a Two-Channel Infrared Lidar for Monitoring Greenhouse Gases in the Surface Layer of the Atmosphere
The results of calculating the atmospheric transmission spectrum and modeling lidar signals in the informative range of greenhouse gas sounding (CO2 and H2O) on horizontal tropospheric paths using the two-channel infrared lidar system under development are presented. It is shown that the lidar system operation spectral range of 4878–4894 cm–1 (2043–2050 nm) is preferable for simultaneous probing of CO2 and H2O. In this range, the level of lidar signals lies in the range of 10–6–10–10 W and exceeds the equivalent power photodetector noise. Based on the results of the calculations, the technical appearance of the developed two-channel infrared lidar system is determined.
期刊介绍:
Optics and Spectroscopy (Optika i spektroskopiya), founded in 1956, presents original and review papers in various fields of modern optics and spectroscopy in the entire wavelength range from radio waves to X-rays. Topics covered include problems of theoretical and experimental spectroscopy of atoms, molecules, and condensed state, lasers and the interaction of laser radiation with matter, physical and geometrical optics, holography, and physical principles of optical instrument making.