除法环上指数为 2 的单能矩阵的乘积

IF 0.6 3区 数学 Q3 MATHEMATICS
M. H. Bien, T. N. Son, P. T. T. Thuy, L. Q. Truong
{"title":"除法环上指数为 2 的单能矩阵的乘积","authors":"M. H. Bien,&nbsp;T. N. Son,&nbsp;P. T. T. Thuy,&nbsp;L. Q. Truong","doi":"10.1007/s10474-024-01427-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>D</i> be a division ring. The first aim of this paper is to describe all unipotent matrices of index 2 in the general linear group <span>\\(\\mathrm {GL}_n(D)\\)</span> of degree <i>n</i> and in the Vershik–Kerov group <span>\\(\\mathrm{GL} _{\\rm VK}(D)\\)</span>. As a corollary, the subgroups generated by such matrices are investigated. The next aim is to seek a positive integer <i>d</i> such that every matrix in these groups is a product of at most <i>d</i> unipotent matrices of index 2. For example, we show that if every element in the derived subgroup <span>\\(D'\\)</span> of <span>\\(D^*=D\\backslash \\{0\\}\\)</span> is a product of at most <i>c</i> commutators in <span>\\(D^*\\)</span>, then every matrix in <span>\\(\\mathrm{GL}_n(D)\\)</span> (resp., <span>\\(\\mathrm{GL} _{\\rm VK}(D)\\)</span>, which is a product of some unipotent matrices of index 2, can be written as a product of at most 4+3<i>c</i> (resp.,5 + 3<i>c</i>) of unipotent matrices of index 2 in <span>\\(\\mathrm{GL}_n(D)\\)</span> (resp., <span>\\(\\mathrm{GL}_{\\rm VK}(D))\\)</span>.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"74 - 100"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of unipotent matrices of index 2 over division rings\",\"authors\":\"M. H. Bien,&nbsp;T. N. Son,&nbsp;P. T. T. Thuy,&nbsp;L. Q. Truong\",\"doi\":\"10.1007/s10474-024-01427-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>D</i> be a division ring. The first aim of this paper is to describe all unipotent matrices of index 2 in the general linear group <span>\\\\(\\\\mathrm {GL}_n(D)\\\\)</span> of degree <i>n</i> and in the Vershik–Kerov group <span>\\\\(\\\\mathrm{GL} _{\\\\rm VK}(D)\\\\)</span>. As a corollary, the subgroups generated by such matrices are investigated. The next aim is to seek a positive integer <i>d</i> such that every matrix in these groups is a product of at most <i>d</i> unipotent matrices of index 2. For example, we show that if every element in the derived subgroup <span>\\\\(D'\\\\)</span> of <span>\\\\(D^*=D\\\\backslash \\\\{0\\\\}\\\\)</span> is a product of at most <i>c</i> commutators in <span>\\\\(D^*\\\\)</span>, then every matrix in <span>\\\\(\\\\mathrm{GL}_n(D)\\\\)</span> (resp., <span>\\\\(\\\\mathrm{GL} _{\\\\rm VK}(D)\\\\)</span>, which is a product of some unipotent matrices of index 2, can be written as a product of at most 4+3<i>c</i> (resp.,5 + 3<i>c</i>) of unipotent matrices of index 2 in <span>\\\\(\\\\mathrm{GL}_n(D)\\\\)</span> (resp., <span>\\\\(\\\\mathrm{GL}_{\\\\rm VK}(D))\\\\)</span>.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"173 1\",\"pages\":\"74 - 100\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01427-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01427-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 D 是一个划分环。本文的第一个目的是描述 n 度一般线性群 \(\mathrm {GL}_n(D)\) 和 Vershik-Kerov 群 \(\mathrm{GL}_{\rm VK}(D)\) 中索引为 2 的所有单能矩阵。(D)/).作为推论,我们研究了由这些矩阵产生的子群。下一个目标是寻找一个正整数 d,使得这些群中的每个矩阵都是最多 d 个索引为 2 的单能矩阵的乘积。例如,我们证明,如果\(D^*=D\backslash \{0\}\)的派生子群\(D'\)中的每个元素都是\(D^*\)中至多c个换元的乘积,那么\(\mathrm{GL}_n(D)\)中的每个矩阵(respect.(resp., \(\mathrm{GL}_{\rm VK}(D)\)) 中索引为 2 的单能矩阵的乘积,可以写成索引为 2 的单能矩阵的至多 4+3c (resp., 5 + 3c) 的乘积 (resp., \(\mathrm{GL}_{\rm VK}(D))\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of unipotent matrices of index 2 over division rings

Let D be a division ring. The first aim of this paper is to describe all unipotent matrices of index 2 in the general linear group \(\mathrm {GL}_n(D)\) of degree n and in the Vershik–Kerov group \(\mathrm{GL} _{\rm VK}(D)\). As a corollary, the subgroups generated by such matrices are investigated. The next aim is to seek a positive integer d such that every matrix in these groups is a product of at most d unipotent matrices of index 2. For example, we show that if every element in the derived subgroup \(D'\) of \(D^*=D\backslash \{0\}\) is a product of at most c commutators in \(D^*\), then every matrix in \(\mathrm{GL}_n(D)\) (resp., \(\mathrm{GL} _{\rm VK}(D)\), which is a product of some unipotent matrices of index 2, can be written as a product of at most 4+3c (resp.,5 + 3c) of unipotent matrices of index 2 in \(\mathrm{GL}_n(D)\) (resp., \(\mathrm{GL}_{\rm VK}(D))\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信