基于分类数据的学校层面不平等测量:一种应用于国际学生评估项目的新方法

IF 2.6 Q1 EDUCATION & EDUCATIONAL RESEARCH
Lucas Sempé
{"title":"基于分类数据的学校层面不平等测量:一种应用于国际学生评估项目的新方法","authors":"Lucas Sempé","doi":"10.1186/s40536-021-00103-7","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a new method to measure school-level inequality based on Item Response Theory (IRT) models. Categorical data collected by large-scale assessments poses diverse methodological challenges hinder measuring inequality due to data truncation and asymmetric intervals between categories. I use family possessions data from PISA 2015 to exemplify the process of computing the measurement and develop a set of country-level mixed-effects linear regression models comparing the predictive performance of the novel inequality measure with school-level Gini coefficients. I find school-level inequality is negatively associated with learning outcomes across many non-European countries.</p>","PeriodicalId":37009,"journal":{"name":"Large-Scale Assessments in Education","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"School-level inequality measurement based categorical data: a novel approach applied to PISA\",\"authors\":\"Lucas Sempé\",\"doi\":\"10.1186/s40536-021-00103-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a new method to measure school-level inequality based on Item Response Theory (IRT) models. Categorical data collected by large-scale assessments poses diverse methodological challenges hinder measuring inequality due to data truncation and asymmetric intervals between categories. I use family possessions data from PISA 2015 to exemplify the process of computing the measurement and develop a set of country-level mixed-effects linear regression models comparing the predictive performance of the novel inequality measure with school-level Gini coefficients. I find school-level inequality is negatively associated with learning outcomes across many non-European countries.</p>\",\"PeriodicalId\":37009,\"journal\":{\"name\":\"Large-Scale Assessments in Education\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Large-Scale Assessments in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40536-021-00103-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Large-Scale Assessments in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40536-021-00103-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于项目反应理论(IRT)模型来测量学校层面不平等现象的新方法。由于数据截断和类别之间的间隔不对称,大规模评估所收集的分类数据给测量不平等带来了各种方法上的挑战。我使用 2015 年国际学生评估项目(PISA)中的家庭财产数据来示范计算测量的过程,并建立了一组国家级混合效应线性回归模型,比较新的不平等测量方法与学校级基尼系数的预测性能。我发现,在许多非欧洲国家,学校层面的不平等与学习成绩呈负相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
School-level inequality measurement based categorical data: a novel approach applied to PISA

This paper introduces a new method to measure school-level inequality based on Item Response Theory (IRT) models. Categorical data collected by large-scale assessments poses diverse methodological challenges hinder measuring inequality due to data truncation and asymmetric intervals between categories. I use family possessions data from PISA 2015 to exemplify the process of computing the measurement and develop a set of country-level mixed-effects linear regression models comparing the predictive performance of the novel inequality measure with school-level Gini coefficients. I find school-level inequality is negatively associated with learning outcomes across many non-European countries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Large-Scale Assessments in Education
Large-Scale Assessments in Education Social Sciences-Education
CiteScore
4.30
自引率
6.50%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信