E. Y. Lapushkina, V. P. Sivtsev, I. V. Kovalev, M. P. Popov, A. P. Nemudry
{"title":"微管固态氧化物燃料电池中基于 BSCFM5 的阴极层的优化及其对功率特性影响的研究","authors":"E. Y. Lapushkina, V. P. Sivtsev, I. V. Kovalev, M. P. Popov, A. P. Nemudry","doi":"10.1134/S1023193524010063","DOIUrl":null,"url":null,"abstract":"<p>Among all types of solid oxide fuel cells, the microtubular design demonstrated increased resistance to thermal cycling and a high power density (from 300 to 1000 W/kg and higher). Currently, one of the basic problems is the choice of a material to be used as the cathode; other problems are associated with the microstructure just within the cathodic layer of the microtubular solid-oxide fuel cells. This work is aimed at the studying of the power characteristics of microtubular solid-oxide fuel cells using Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.75</sub>Fe<sub>0.2</sub>Mo<sub>0.05</sub>O<sub>3 – δ</sub> as a cathode material. A cathodic layer with a thickness of 65 µm, including 4 cathodic functional layers and 4 cathodic collecting ones, is optimal and allows reaching the power of a single microtubular solid-oxide fuel cell as high as 750–850 mW/cm<sup>2</sup>.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 1","pages":"50 - 56"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the BSCFM5-Based Cathode Layer in the Microtubular Solid-Oxide Fuel Cells and the Study of Its Effect on the Power Characteristics\",\"authors\":\"E. Y. Lapushkina, V. P. Sivtsev, I. V. Kovalev, M. P. Popov, A. P. Nemudry\",\"doi\":\"10.1134/S1023193524010063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among all types of solid oxide fuel cells, the microtubular design demonstrated increased resistance to thermal cycling and a high power density (from 300 to 1000 W/kg and higher). Currently, one of the basic problems is the choice of a material to be used as the cathode; other problems are associated with the microstructure just within the cathodic layer of the microtubular solid-oxide fuel cells. This work is aimed at the studying of the power characteristics of microtubular solid-oxide fuel cells using Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.75</sub>Fe<sub>0.2</sub>Mo<sub>0.05</sub>O<sub>3 – δ</sub> as a cathode material. A cathodic layer with a thickness of 65 µm, including 4 cathodic functional layers and 4 cathodic collecting ones, is optimal and allows reaching the power of a single microtubular solid-oxide fuel cell as high as 750–850 mW/cm<sup>2</sup>.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"60 1\",\"pages\":\"50 - 56\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1023193524010063\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524010063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Optimization of the BSCFM5-Based Cathode Layer in the Microtubular Solid-Oxide Fuel Cells and the Study of Its Effect on the Power Characteristics
Among all types of solid oxide fuel cells, the microtubular design demonstrated increased resistance to thermal cycling and a high power density (from 300 to 1000 W/kg and higher). Currently, one of the basic problems is the choice of a material to be used as the cathode; other problems are associated with the microstructure just within the cathodic layer of the microtubular solid-oxide fuel cells. This work is aimed at the studying of the power characteristics of microtubular solid-oxide fuel cells using Ba0.5Sr0.5Co0.75Fe0.2Mo0.05O3 – δ as a cathode material. A cathodic layer with a thickness of 65 µm, including 4 cathodic functional layers and 4 cathodic collecting ones, is optimal and allows reaching the power of a single microtubular solid-oxide fuel cell as high as 750–850 mW/cm2.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.