José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla
{"title":"论特鲁丁格-莫泽类型的超临界 k-黑森不等式和极值函数","authors":"José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla","doi":"10.1007/s10231-024-01455-x","DOIUrl":null,"url":null,"abstract":"<div><p>We establish a supercritical Trudinger–Moser type inequality for the <i>k</i>-Hessian operator on the space of the <i>k</i>-admissible radially symmetric functions <span>\\(\\Phi ^{k}_{0,\\textrm{rad}}(B)\\)</span>, where <i>B</i> is the unit ball in <span>\\({\\mathbb {R}}^{N}\\)</span>. We also prove the existence of extremal functions for this new supercritical inequality.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01455-x.pdf","citationCount":"0","resultStr":"{\"title\":\"On a supercritical k-Hessian inequality of Trudinger–Moser type and extremal functions\",\"authors\":\"José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla\",\"doi\":\"10.1007/s10231-024-01455-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish a supercritical Trudinger–Moser type inequality for the <i>k</i>-Hessian operator on the space of the <i>k</i>-admissible radially symmetric functions <span>\\\\(\\\\Phi ^{k}_{0,\\\\textrm{rad}}(B)\\\\)</span>, where <i>B</i> is the unit ball in <span>\\\\({\\\\mathbb {R}}^{N}\\\\)</span>. We also prove the existence of extremal functions for this new supercritical inequality.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-024-01455-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01455-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01455-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a supercritical k-Hessian inequality of Trudinger–Moser type and extremal functions
We establish a supercritical Trudinger–Moser type inequality for the k-Hessian operator on the space of the k-admissible radially symmetric functions \(\Phi ^{k}_{0,\textrm{rad}}(B)\), where B is the unit ball in \({\mathbb {R}}^{N}\). We also prove the existence of extremal functions for this new supercritical inequality.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.