{"title":"从希尔伯特方案到恩里克流形的同调卷的后裔","authors":"Fabian Reede","doi":"10.1007/s10231-024-01437-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a K3 surface which doubly covers an Enriques surface <i>S</i>. If <span>\\(n\\in {\\mathbb {N}}\\)</span> is an odd number, then the Hilbert scheme of <i>n</i>-points <span>\\(X^{[n]}\\)</span> admits a natural quotient <span>\\(S_{[n]}\\)</span>. This quotient is an Enriques manifold in the sense of Oguiso and Schröer. In this paper we construct slope stable sheaves on <span>\\(S_{[n]}\\)</span> and study some of their properties.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01437-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Descent of tautological sheaves from Hilbert schemes to Enriques manifolds\",\"authors\":\"Fabian Reede\",\"doi\":\"10.1007/s10231-024-01437-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>X</i> be a K3 surface which doubly covers an Enriques surface <i>S</i>. If <span>\\\\(n\\\\in {\\\\mathbb {N}}\\\\)</span> is an odd number, then the Hilbert scheme of <i>n</i>-points <span>\\\\(X^{[n]}\\\\)</span> admits a natural quotient <span>\\\\(S_{[n]}\\\\)</span>. This quotient is an Enriques manifold in the sense of Oguiso and Schröer. In this paper we construct slope stable sheaves on <span>\\\\(S_{[n]}\\\\)</span> and study some of their properties.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-024-01437-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01437-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01437-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果 \(n\in {\mathbb {N}}\) 是奇数,那么 n 点的希尔伯特方案 \(X^{[n]}\)就有一个自然商 \(S_{[n]}\)。这个商是奥吉索(Oguiso)和施罗尔(Schröer)意义上的恩里克流形。在本文中,我们将在\(S_{[n]}\)上构造斜率稳定剪,并研究它们的一些性质。
Descent of tautological sheaves from Hilbert schemes to Enriques manifolds
Let X be a K3 surface which doubly covers an Enriques surface S. If \(n\in {\mathbb {N}}\) is an odd number, then the Hilbert scheme of n-points \(X^{[n]}\) admits a natural quotient \(S_{[n]}\). This quotient is an Enriques manifold in the sense of Oguiso and Schröer. In this paper we construct slope stable sheaves on \(S_{[n]}\) and study some of their properties.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.