旋转里奇曲面

IF 1 3区 数学 Q1 MATHEMATICS
Iury Domingos, Roney Santos, Feliciano Vitório
{"title":"旋转里奇曲面","authors":"Iury Domingos,&nbsp;Roney Santos,&nbsp;Feliciano Vitório","doi":"10.1007/s10231-024-01436-0","DOIUrl":null,"url":null,"abstract":"<div><p>We classify rotational surfaces in the three-dimensional Euclidean space whose Gaussian curvature <i>K</i> satisfies </p><div><div><span>$$\\begin{aligned} K\\Delta K - \\Vert \\nabla K\\Vert ^2-4K^3 = 0. \\end{aligned}$$</span></div></div><p>These surfaces are referred to as rotational Ricci surfaces. As an application, we show that there is a one-parameter family of such surfaces meeting the boundary of the unit Euclidean three-ball orthogonally. In addition, we show that this family interpolates a vertical geodesic and the critical catenoid.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational Ricci surfaces\",\"authors\":\"Iury Domingos,&nbsp;Roney Santos,&nbsp;Feliciano Vitório\",\"doi\":\"10.1007/s10231-024-01436-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify rotational surfaces in the three-dimensional Euclidean space whose Gaussian curvature <i>K</i> satisfies </p><div><div><span>$$\\\\begin{aligned} K\\\\Delta K - \\\\Vert \\\\nabla K\\\\Vert ^2-4K^3 = 0. \\\\end{aligned}$$</span></div></div><p>These surfaces are referred to as rotational Ricci surfaces. As an application, we show that there is a one-parameter family of such surfaces meeting the boundary of the unit Euclidean three-ball orthogonally. In addition, we show that this family interpolates a vertical geodesic and the critical catenoid.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01436-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01436-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对三维欧几里得空间中高斯曲率 K 满足 $$\begin{aligned} 的旋转曲面进行分类。K\Delta K -\Vert \nabla K\Vert ^2-4K^3 = 0.作为应用,我们证明了有一个一参数族的此类曲面与单位欧几里得三球的边界正交。此外,我们还证明了这个族插值垂直大地线和临界天顶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rotational Ricci surfaces

Rotational Ricci surfaces

We classify rotational surfaces in the three-dimensional Euclidean space whose Gaussian curvature K satisfies

$$\begin{aligned} K\Delta K - \Vert \nabla K\Vert ^2-4K^3 = 0. \end{aligned}$$

These surfaces are referred to as rotational Ricci surfaces. As an application, we show that there is a one-parameter family of such surfaces meeting the boundary of the unit Euclidean three-ball orthogonally. In addition, we show that this family interpolates a vertical geodesic and the critical catenoid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信