火焰改性碳基电极作为高性能氢/铁电池的正极

Xiong Dan , Wei Li , Fandi Ning , Qinglin Wen , Can He , Zhi Chai , Xiaochun Zhou
{"title":"火焰改性碳基电极作为高性能氢/铁电池的正极","authors":"Xiong Dan ,&nbsp;Wei Li ,&nbsp;Fandi Ning ,&nbsp;Qinglin Wen ,&nbsp;Can He ,&nbsp;Zhi Chai ,&nbsp;Xiaochun Zhou","doi":"10.1016/j.nxener.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><p>The electrode is a core component that affects the overall performance of the hydrogen/iron redox flow battery. To address the drawbacks associated with the limited electrochemical activity and fewer active sites of the carbon-based electrode, this study employs a straightforward and effective flame method to synthesize carbon nanotubes (CNTs) on carbon paper and NiO/CNT composite on graphite felt. The CNT on the modified carbon-based electrode contains many hydrophilic and oxygen-containing functional groups, greatly improving the hydrophilicity of the electrode, thereby increasing the electrochemical surface area. The modified carbon-based electrode exhibits better electrochemical activity due to the CNT or NiO/CNT providing more active sites. At 50 mA cm<sup>−2</sup>, the energy efficiency of pristine carbon paper and graphite felt is 60.8% and 52.4%, respectively, while the energy efficiency of the modified carbon paper and graphite felt reached 75.3% and 80.5%, respectively. The modified carbon-based electrode achieves a 100% coulombic efficiency, with no significant degradation in energy efficiency after running for 300 cycles, demonstrating excellent stability. This study not only investigates the performance of graphite felt electrodes in hydrogen/iron batteries but also proposes a flame method for preparing CNT-modified carbon-based electrodes for high-performance hydrogen/iron batteries.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000371/pdfft?md5=df5c626821a58e1ace5f58406f68c160&pid=1-s2.0-S2949821X24000371-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Flame modified carbon-based electrodes as positive electrode for high performance of hydrogen/iron battery\",\"authors\":\"Xiong Dan ,&nbsp;Wei Li ,&nbsp;Fandi Ning ,&nbsp;Qinglin Wen ,&nbsp;Can He ,&nbsp;Zhi Chai ,&nbsp;Xiaochun Zhou\",\"doi\":\"10.1016/j.nxener.2024.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrode is a core component that affects the overall performance of the hydrogen/iron redox flow battery. To address the drawbacks associated with the limited electrochemical activity and fewer active sites of the carbon-based electrode, this study employs a straightforward and effective flame method to synthesize carbon nanotubes (CNTs) on carbon paper and NiO/CNT composite on graphite felt. The CNT on the modified carbon-based electrode contains many hydrophilic and oxygen-containing functional groups, greatly improving the hydrophilicity of the electrode, thereby increasing the electrochemical surface area. The modified carbon-based electrode exhibits better electrochemical activity due to the CNT or NiO/CNT providing more active sites. At 50 mA cm<sup>−2</sup>, the energy efficiency of pristine carbon paper and graphite felt is 60.8% and 52.4%, respectively, while the energy efficiency of the modified carbon paper and graphite felt reached 75.3% and 80.5%, respectively. The modified carbon-based electrode achieves a 100% coulombic efficiency, with no significant degradation in energy efficiency after running for 300 cycles, demonstrating excellent stability. This study not only investigates the performance of graphite felt electrodes in hydrogen/iron batteries but also proposes a flame method for preparing CNT-modified carbon-based electrodes for high-performance hydrogen/iron batteries.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"4 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000371/pdfft?md5=df5c626821a58e1ace5f58406f68c160&pid=1-s2.0-S2949821X24000371-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电极是影响氢/铁氧化还原液流电池整体性能的核心部件。针对碳基电极电化学活性有限、活性位点较少的缺点,本研究采用直接有效的火焰法在碳纸上合成碳纳米管(CNT),在石墨毡上合成 NiO/CNT 复合材料。改性碳基电极上的 CNT 含有许多亲水和含氧官能团,大大提高了电极的亲水性,从而增加了电化学表面积。由于 CNT 或 NiO/CNT 提供了更多的活性位点,改性碳基电极表现出更高的电化学活性。在 50 mA cm-2 的条件下,原始碳纸和石墨毡的能量效率分别为 60.8% 和 52.4%,而改性碳纸和石墨毡的能量效率分别达到 75.3% 和 80.5%。改性碳基电极的库仑效率达到了 100%,在运行 300 个循环后,能量效率没有明显降低,表现出极佳的稳定性。该研究不仅探讨了石墨毡电极在氢/铁电池中的性能,还提出了一种火焰法制备碳纳米管改性碳基电极,用于高性能氢/铁电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flame modified carbon-based electrodes as positive electrode for high performance of hydrogen/iron battery

The electrode is a core component that affects the overall performance of the hydrogen/iron redox flow battery. To address the drawbacks associated with the limited electrochemical activity and fewer active sites of the carbon-based electrode, this study employs a straightforward and effective flame method to synthesize carbon nanotubes (CNTs) on carbon paper and NiO/CNT composite on graphite felt. The CNT on the modified carbon-based electrode contains many hydrophilic and oxygen-containing functional groups, greatly improving the hydrophilicity of the electrode, thereby increasing the electrochemical surface area. The modified carbon-based electrode exhibits better electrochemical activity due to the CNT or NiO/CNT providing more active sites. At 50 mA cm−2, the energy efficiency of pristine carbon paper and graphite felt is 60.8% and 52.4%, respectively, while the energy efficiency of the modified carbon paper and graphite felt reached 75.3% and 80.5%, respectively. The modified carbon-based electrode achieves a 100% coulombic efficiency, with no significant degradation in energy efficiency after running for 300 cycles, demonstrating excellent stability. This study not only investigates the performance of graphite felt electrodes in hydrogen/iron batteries but also proposes a flame method for preparing CNT-modified carbon-based electrodes for high-performance hydrogen/iron batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信