有限域上的无势线性化多项式,再论

IF 1.2 3区 数学 Q1 MATHEMATICS
Daniel Panario , Lucas Reis
{"title":"有限域上的无势线性化多项式,再论","authors":"Daniel Panario ,&nbsp;Lucas Reis","doi":"10.1016/j.ffa.2024.102442","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we develop further studies on nilpotent linearized polynomials (NLP's) over finite fields, a class of polynomials introduced by the second author. We characterize certain NLP's that are binomials and show that, in general, NLP's are also nilpotent over a particular tower of finite fields. We also develop results on the construction of permutation polynomials from NLP's, extending some past results. In particular, the latter yields polynomials that permutes certain infinite subfields of <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span> and have a very particular cycle structure. Finally, we provide a nice correspondence between certain NLP's and involutions in binary fields and, in particular, we discuss a general method to produce affine involutions over binary fields without fixed points.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"97 ","pages":"Article 102442"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nilpotent linearized polynomials over finite fields, revisited\",\"authors\":\"Daniel Panario ,&nbsp;Lucas Reis\",\"doi\":\"10.1016/j.ffa.2024.102442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we develop further studies on nilpotent linearized polynomials (NLP's) over finite fields, a class of polynomials introduced by the second author. We characterize certain NLP's that are binomials and show that, in general, NLP's are also nilpotent over a particular tower of finite fields. We also develop results on the construction of permutation polynomials from NLP's, extending some past results. In particular, the latter yields polynomials that permutes certain infinite subfields of <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span> and have a very particular cycle structure. Finally, we provide a nice correspondence between certain NLP's and involutions in binary fields and, in particular, we discuss a general method to produce affine involutions over binary fields without fixed points.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"97 \",\"pages\":\"Article 102442\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000819\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000819","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们进一步研究了有限域上的零势线性化多项式(NLP),这是第二位作者提出的一类多项式。我们描述了某些二项式 NLP 的特征,并证明一般来说,有限域上的 NLP 也是零势的。我们还发展了从 NLP 构建置换多项式的结果,扩展了过去的一些结果。特别是,后者产生的多项式可以对 F‾q 的某些无限子域进行置换,并具有非常特殊的循环结构。最后,我们提供了二元域中某些 NLP 与渐开线之间的良好对应关系,特别是,我们讨论了在二元域上产生无定点仿射渐开线的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nilpotent linearized polynomials over finite fields, revisited

In this paper we develop further studies on nilpotent linearized polynomials (NLP's) over finite fields, a class of polynomials introduced by the second author. We characterize certain NLP's that are binomials and show that, in general, NLP's are also nilpotent over a particular tower of finite fields. We also develop results on the construction of permutation polynomials from NLP's, extending some past results. In particular, the latter yields polynomials that permutes certain infinite subfields of Fq and have a very particular cycle structure. Finally, we provide a nice correspondence between certain NLP's and involutions in binary fields and, in particular, we discuss a general method to produce affine involutions over binary fields without fixed points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信