C. Gutierrez , S. Dasso , P. Démoulin , M. Janvier
{"title":"福布什下降率由国际商品市场机制和特别指标驱动的比较","authors":"C. Gutierrez , S. Dasso , P. Démoulin , M. Janvier","doi":"10.1016/j.jastp.2024.106232","DOIUrl":null,"url":null,"abstract":"<div><p>Solar wind structures passing Earth can shield Earth from Galactic Cosmic Rays (GCRs), producing variations in the GCR flux that can be observed by ground-based detectors. In this paper we study the differences of Forbush decreases (FDs) produced by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs), applying a superposed epoch technique to large samples of FDs associated with ICMEs and SIRs. The analysis of the GCRs flux is made using data from neutron monitors at an Antarctic station (McMurdo). We also study the dependence of the FD properties with the bulk velocity of ICMEs/SIRs. We confirm that the faster ICMEs cause the largest FDs. In contrast, the FD intensity in SIRs is weakly dependent of the bulk velocity. Indeed, we find that ICMEs and SIRs with similar solar wind velocity produce very different FDs. This points for a dominant role of the magnetic field in screening GCRs. Finally, we find that in ICMEs the minimum GCR flux is usually observed close to the beginning of the magnetic ejecta, while in SIRs this is usually at the trailing edge.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of Forbush Decreases driven by ICMEs and SIRs\",\"authors\":\"C. Gutierrez , S. Dasso , P. Démoulin , M. Janvier\",\"doi\":\"10.1016/j.jastp.2024.106232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar wind structures passing Earth can shield Earth from Galactic Cosmic Rays (GCRs), producing variations in the GCR flux that can be observed by ground-based detectors. In this paper we study the differences of Forbush decreases (FDs) produced by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs), applying a superposed epoch technique to large samples of FDs associated with ICMEs and SIRs. The analysis of the GCRs flux is made using data from neutron monitors at an Antarctic station (McMurdo). We also study the dependence of the FD properties with the bulk velocity of ICMEs/SIRs. We confirm that the faster ICMEs cause the largest FDs. In contrast, the FD intensity in SIRs is weakly dependent of the bulk velocity. Indeed, we find that ICMEs and SIRs with similar solar wind velocity produce very different FDs. This points for a dominant role of the magnetic field in screening GCRs. Finally, we find that in ICMEs the minimum GCR flux is usually observed close to the beginning of the magnetic ejecta, while in SIRs this is usually at the trailing edge.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624000609\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624000609","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A comparison of Forbush Decreases driven by ICMEs and SIRs
Solar wind structures passing Earth can shield Earth from Galactic Cosmic Rays (GCRs), producing variations in the GCR flux that can be observed by ground-based detectors. In this paper we study the differences of Forbush decreases (FDs) produced by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs), applying a superposed epoch technique to large samples of FDs associated with ICMEs and SIRs. The analysis of the GCRs flux is made using data from neutron monitors at an Antarctic station (McMurdo). We also study the dependence of the FD properties with the bulk velocity of ICMEs/SIRs. We confirm that the faster ICMEs cause the largest FDs. In contrast, the FD intensity in SIRs is weakly dependent of the bulk velocity. Indeed, we find that ICMEs and SIRs with similar solar wind velocity produce very different FDs. This points for a dominant role of the magnetic field in screening GCRs. Finally, we find that in ICMEs the minimum GCR flux is usually observed close to the beginning of the magnetic ejecta, while in SIRs this is usually at the trailing edge.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.