{"title":"不同数量和组合的腰椎相关骨折风险:马尼托巴省 BMD 登记","authors":"Fatima Zarzour, William D. Leslie","doi":"10.1016/j.jocd.2024.101502","DOIUrl":null,"url":null,"abstract":"<div><p>Bone mineral density (BMD) is widely used for assessment of fracture risk. For the lumbar spine, BMD is typically measured from L1-L4 as it provides the largest area for assessment with the best measurement precision. Structural artifact often confounds spine BMD in clinical practice, and the International Society for Clinical Densitometry (ISCD) recommends removing vertebrae with artifact when reporting spine BMD. In its most recent position statements, the ISCD recommended against the use of a single vertebra when reporting spine BMD but stated that further studies should be done. The current analysis was performed to compare the performance of BMD from different numbers and combination of vertebral levels on fracture prediction in a large clinical registry of DXA tests for the Province of Manitoba, Canada. The study population comprised 39,727 individuals aged 40 years and older (mean age 62.7 years, 91.0 % female) with baseline DXA after excluding those with evidence of structural artifact. Mean follow-up for ascertaining fracture outcomes was 8.7 years. Area under the curve (AUC) for incident fracture risk stratification was statistically significant regardless of the BMD measurement site or fracture outcome. AUC differences with the various numbers and combinations of vertebral levels including a single vertebral body were small (less than or equal to 0.01). More substantial AUC differences were seen for femoral neck and total hip BMD versus L1-L4 BMD, approaching 0.1 for hip fracture stratification. In summary, we found that using combinations of fewer than 4 vertebrae including individual lumbar vertebrae predicted incident fractures. Importantly, differences between these different combinations were small when compared with L1-L4. Spine BMD was a better predictor of incident spine fracture compared to the hip, whereas the hip was better for hip fracture and overall fracture prediction.</p></div>","PeriodicalId":50240,"journal":{"name":"Journal of Clinical Densitometry","volume":"27 3","pages":"Article 101502"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture Risk Associated with Different Numbers and Combinations of Lumbar Vertebrae: The Manitoba BMD Registry\",\"authors\":\"Fatima Zarzour, William D. Leslie\",\"doi\":\"10.1016/j.jocd.2024.101502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone mineral density (BMD) is widely used for assessment of fracture risk. For the lumbar spine, BMD is typically measured from L1-L4 as it provides the largest area for assessment with the best measurement precision. Structural artifact often confounds spine BMD in clinical practice, and the International Society for Clinical Densitometry (ISCD) recommends removing vertebrae with artifact when reporting spine BMD. In its most recent position statements, the ISCD recommended against the use of a single vertebra when reporting spine BMD but stated that further studies should be done. The current analysis was performed to compare the performance of BMD from different numbers and combination of vertebral levels on fracture prediction in a large clinical registry of DXA tests for the Province of Manitoba, Canada. The study population comprised 39,727 individuals aged 40 years and older (mean age 62.7 years, 91.0 % female) with baseline DXA after excluding those with evidence of structural artifact. Mean follow-up for ascertaining fracture outcomes was 8.7 years. Area under the curve (AUC) for incident fracture risk stratification was statistically significant regardless of the BMD measurement site or fracture outcome. AUC differences with the various numbers and combinations of vertebral levels including a single vertebral body were small (less than or equal to 0.01). More substantial AUC differences were seen for femoral neck and total hip BMD versus L1-L4 BMD, approaching 0.1 for hip fracture stratification. In summary, we found that using combinations of fewer than 4 vertebrae including individual lumbar vertebrae predicted incident fractures. Importantly, differences between these different combinations were small when compared with L1-L4. Spine BMD was a better predictor of incident spine fracture compared to the hip, whereas the hip was better for hip fracture and overall fracture prediction.</p></div>\",\"PeriodicalId\":50240,\"journal\":{\"name\":\"Journal of Clinical Densitometry\",\"volume\":\"27 3\",\"pages\":\"Article 101502\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Densitometry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094695024000374\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Densitometry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094695024000374","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Fracture Risk Associated with Different Numbers and Combinations of Lumbar Vertebrae: The Manitoba BMD Registry
Bone mineral density (BMD) is widely used for assessment of fracture risk. For the lumbar spine, BMD is typically measured from L1-L4 as it provides the largest area for assessment with the best measurement precision. Structural artifact often confounds spine BMD in clinical practice, and the International Society for Clinical Densitometry (ISCD) recommends removing vertebrae with artifact when reporting spine BMD. In its most recent position statements, the ISCD recommended against the use of a single vertebra when reporting spine BMD but stated that further studies should be done. The current analysis was performed to compare the performance of BMD from different numbers and combination of vertebral levels on fracture prediction in a large clinical registry of DXA tests for the Province of Manitoba, Canada. The study population comprised 39,727 individuals aged 40 years and older (mean age 62.7 years, 91.0 % female) with baseline DXA after excluding those with evidence of structural artifact. Mean follow-up for ascertaining fracture outcomes was 8.7 years. Area under the curve (AUC) for incident fracture risk stratification was statistically significant regardless of the BMD measurement site or fracture outcome. AUC differences with the various numbers and combinations of vertebral levels including a single vertebral body were small (less than or equal to 0.01). More substantial AUC differences were seen for femoral neck and total hip BMD versus L1-L4 BMD, approaching 0.1 for hip fracture stratification. In summary, we found that using combinations of fewer than 4 vertebrae including individual lumbar vertebrae predicted incident fractures. Importantly, differences between these different combinations were small when compared with L1-L4. Spine BMD was a better predictor of incident spine fracture compared to the hip, whereas the hip was better for hip fracture and overall fracture prediction.
期刊介绍:
The Journal is committed to serving ISCD''s mission - the education of heterogenous physician specialties and technologists who are involved in the clinical assessment of skeletal health. The focus of JCD is bone mass measurement, including epidemiology of bone mass, how drugs and diseases alter bone mass, new techniques and quality assurance in bone mass imaging technologies, and bone mass health/economics.
Combining high quality research and review articles with sound, practice-oriented advice, JCD meets the diverse diagnostic and management needs of radiologists, endocrinologists, nephrologists, rheumatologists, gynecologists, family physicians, internists, and technologists whose patients require diagnostic clinical densitometry for therapeutic management.