有限容量通信信道上半线性波方程的状态估计

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Maxim V. Dolgopolik , Alexander L. Fradkov , Boris Andrievsky
{"title":"有限容量通信信道上半线性波方程的状态估计","authors":"Maxim V. Dolgopolik ,&nbsp;Alexander L. Fradkov ,&nbsp;Boris Andrievsky","doi":"10.1016/j.nahs.2024.101500","DOIUrl":null,"url":null,"abstract":"<div><p>In the paper the problem of state estimation of the nonlinear spatially-distributed system described by semilinear wave equations over the limited capacity communication channel is considered under the assumption that the boundary derivative is measured with the sampling and the external boundary control input is perfectly known. The Luenberger-type observer is designed based on the Speed-gradient method with an energy-like objective functional. An upper bound for the observer error in terms of the data transmission error and channel data rate (capacity) is derived and two data transmission procedures are numerically studied to find the admissible data transmission bounds. The key contribution of this paper is the extension of the previously existing results to the cases when the measurements and signal transmission in the control system cannot be available instantly and the finite capacity of the communication channels should be taken into account. The study of such cases is important for the observation and control of PDEs since the instant processing of infinite dimensional PDE data is problematic. The novelty of the results is threefold. Firstly, the state observer for distributed systems described by semilinear wave equations under limited channel data rate (capacity) is designed. Secondly, first time analytic bound for estimation error is obtained. Thirdly, first time the adaptive coding procedure is introduced and numerically studied for distributed systems.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"53 ","pages":"Article 101500"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State estimation of the semilinear wave equation over the limited capacity communication channel\",\"authors\":\"Maxim V. Dolgopolik ,&nbsp;Alexander L. Fradkov ,&nbsp;Boris Andrievsky\",\"doi\":\"10.1016/j.nahs.2024.101500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the paper the problem of state estimation of the nonlinear spatially-distributed system described by semilinear wave equations over the limited capacity communication channel is considered under the assumption that the boundary derivative is measured with the sampling and the external boundary control input is perfectly known. The Luenberger-type observer is designed based on the Speed-gradient method with an energy-like objective functional. An upper bound for the observer error in terms of the data transmission error and channel data rate (capacity) is derived and two data transmission procedures are numerically studied to find the admissible data transmission bounds. The key contribution of this paper is the extension of the previously existing results to the cases when the measurements and signal transmission in the control system cannot be available instantly and the finite capacity of the communication channels should be taken into account. The study of such cases is important for the observation and control of PDEs since the instant processing of infinite dimensional PDE data is problematic. The novelty of the results is threefold. Firstly, the state observer for distributed systems described by semilinear wave equations under limited channel data rate (capacity) is designed. Secondly, first time analytic bound for estimation error is obtained. Thirdly, first time the adaptive coding procedure is introduced and numerically studied for distributed systems.</p></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"53 \",\"pages\":\"Article 101500\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X24000372\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000372","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了在有限容量通信信道上由半线性波方程描述的非线性空间分布系统的状态估计问题,假设边界导数是通过采样测量的,而外部边界控制输入是完全已知的。基于速度梯度法设计了具有类能量目标函数的卢恩贝格尔型观测器。通过数据传输误差和信道数据速率(容量)推导出了观测器误差的上界,并对两种数据传输程序进行了数值研究,从而找到了可接受的数据传输界限。本文的主要贡献在于将之前已有的结果扩展到了控制系统中的测量和信号传输无法即时获得,并且需要考虑通信信道的有限容量的情况。由于即时处理无限维 PDE 数据存在问题,因此对这种情况的研究对于 PDE 的观测和控制非常重要。这些结果的新颖性体现在三个方面。首先,设计了有限信道数据率(容量)下半线性波方程描述的分布式系统的状态观测器。其次,首次获得了估计误差的解析约束。第三,首次引入了分布式系统的自适应编码程序并对其进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State estimation of the semilinear wave equation over the limited capacity communication channel

In the paper the problem of state estimation of the nonlinear spatially-distributed system described by semilinear wave equations over the limited capacity communication channel is considered under the assumption that the boundary derivative is measured with the sampling and the external boundary control input is perfectly known. The Luenberger-type observer is designed based on the Speed-gradient method with an energy-like objective functional. An upper bound for the observer error in terms of the data transmission error and channel data rate (capacity) is derived and two data transmission procedures are numerically studied to find the admissible data transmission bounds. The key contribution of this paper is the extension of the previously existing results to the cases when the measurements and signal transmission in the control system cannot be available instantly and the finite capacity of the communication channels should be taken into account. The study of such cases is important for the observation and control of PDEs since the instant processing of infinite dimensional PDE data is problematic. The novelty of the results is threefold. Firstly, the state observer for distributed systems described by semilinear wave equations under limited channel data rate (capacity) is designed. Secondly, first time analytic bound for estimation error is obtained. Thirdly, first time the adaptive coding procedure is introduced and numerically studied for distributed systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信