Sangwoo Lee , Jun-Gyu Choi , Se Hyun Kim , Won-June Lee , Taejin Kim , Min Hyuk Park , Myung-Han Yoon
{"title":"通过光子辅助缺陷调制实现铁电锆铪氧化物的非中心对称结晶","authors":"Sangwoo Lee , Jun-Gyu Choi , Se Hyun Kim , Won-June Lee , Taejin Kim , Min Hyuk Park , Myung-Han Yoon","doi":"10.1016/j.mser.2024.100800","DOIUrl":null,"url":null,"abstract":"<div><p>Ferroelectricity in Hf<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub> (HZO) thin films has garnered significant attention for advanced memory devices. However, the challenge in understanding nanoscale polymorphism and the absence of non-centrosymmetric crystallization techniques compatible with back-end-of-line processes have restricted its broader application to various types of information storage systems. In this study, we report a novel method to generate the ferroelectric orthorhombic phase (<em>o</em>-phase) in HZO films via photon-assisted non-centrosymmetric crystallization. As-prepared HZO films (8 nm) prepare by atomic layer deposition underwent thermal annealing and subsequent deep ultraviolet (DUV) irradiation. The DUV treatment successfully triggered ferroelectricity in HZO films annealed at 300 °C. Moreover, the same post-treatment applied to HZO films annealed at 400 °C led to a further enhanced polarization up to 29.2 μC cm<sup>−2</sup> under high bipolar triangular pulses and outstanding reliability for up to 10<sup>6</sup> bias stress cycles. Finally, based on in-depth microscopic and structural analyses, we proposed the mechanism on the symmetry-breaking phase transformation to the <em>o</em>-phase HZO with advanced ferroelectricity via oxygen vacancy-driven lattice rearrangement.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"159 ","pages":"Article 100800"},"PeriodicalIF":31.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-centrosymmetric crystallization in ferroelectric hafnium zirconium oxide via photon-assisted defect modulation\",\"authors\":\"Sangwoo Lee , Jun-Gyu Choi , Se Hyun Kim , Won-June Lee , Taejin Kim , Min Hyuk Park , Myung-Han Yoon\",\"doi\":\"10.1016/j.mser.2024.100800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ferroelectricity in Hf<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub> (HZO) thin films has garnered significant attention for advanced memory devices. However, the challenge in understanding nanoscale polymorphism and the absence of non-centrosymmetric crystallization techniques compatible with back-end-of-line processes have restricted its broader application to various types of information storage systems. In this study, we report a novel method to generate the ferroelectric orthorhombic phase (<em>o</em>-phase) in HZO films via photon-assisted non-centrosymmetric crystallization. As-prepared HZO films (8 nm) prepare by atomic layer deposition underwent thermal annealing and subsequent deep ultraviolet (DUV) irradiation. The DUV treatment successfully triggered ferroelectricity in HZO films annealed at 300 °C. Moreover, the same post-treatment applied to HZO films annealed at 400 °C led to a further enhanced polarization up to 29.2 μC cm<sup>−2</sup> under high bipolar triangular pulses and outstanding reliability for up to 10<sup>6</sup> bias stress cycles. Finally, based on in-depth microscopic and structural analyses, we proposed the mechanism on the symmetry-breaking phase transformation to the <em>o</em>-phase HZO with advanced ferroelectricity via oxygen vacancy-driven lattice rearrangement.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"159 \",\"pages\":\"Article 100800\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000305\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000305","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Non-centrosymmetric crystallization in ferroelectric hafnium zirconium oxide via photon-assisted defect modulation
Ferroelectricity in Hf1-xZrxO2 (HZO) thin films has garnered significant attention for advanced memory devices. However, the challenge in understanding nanoscale polymorphism and the absence of non-centrosymmetric crystallization techniques compatible with back-end-of-line processes have restricted its broader application to various types of information storage systems. In this study, we report a novel method to generate the ferroelectric orthorhombic phase (o-phase) in HZO films via photon-assisted non-centrosymmetric crystallization. As-prepared HZO films (8 nm) prepare by atomic layer deposition underwent thermal annealing and subsequent deep ultraviolet (DUV) irradiation. The DUV treatment successfully triggered ferroelectricity in HZO films annealed at 300 °C. Moreover, the same post-treatment applied to HZO films annealed at 400 °C led to a further enhanced polarization up to 29.2 μC cm−2 under high bipolar triangular pulses and outstanding reliability for up to 106 bias stress cycles. Finally, based on in-depth microscopic and structural analyses, we proposed the mechanism on the symmetry-breaking phase transformation to the o-phase HZO with advanced ferroelectricity via oxygen vacancy-driven lattice rearrangement.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.