L.J. Pinault , H. Yano , K. Okudaira , I.A. Crawford
{"title":"YOLO-ET:用于检测、定位和分类人为污染物和地外微颗粒的机器学习模型,针对移动处理系统进行了优化","authors":"L.J. Pinault , H. Yano , K. Okudaira , I.A. Crawford","doi":"10.1016/j.ascom.2024.100828","DOIUrl":null,"url":null,"abstract":"<div><p>Imminent robotic and human activities on the Moon and other planetary bodies would benefit from advanced <em>in situ</em> Computer Vision and Machine Learning capabilities to identify and quantify microparticle terrestrial contaminants, lunar regolith disturbances, the flux of interplanetary dust particles, possible interstellar dust, <span><math><mi>β</mi></math></span>-meteoroids, and secondary impact ejecta. The YOLO-ET (ExtraTerrestrial) algorithm, an innovation in this field, fine-tunes Tiny-YOLO to specifically address these challenges. Designed for coreML model transference to mobile devices, the algorithm facilitates edge computing in space environment conditions. YOLO-ET is deployable as an app on an iPhone with LabCam® optical enhancement, ready for space application ruggedisation. Training on images from the Tanpopo aerogel panels returned from Japan’s Kibo module of the International Space Station, YOLO-ET demonstrates a 90% detection rate for surface contaminant microparticles on the aerogels, and shows promising early results for detection of both microparticle contaminants on the Moon and for evaluating asteroid return samples. YOLO-ET’s application to identifying spacecraft-derived microparticles in lunar regolith simulant samples and SEM images of asteroid Ryugu samples returned by Hayabusa2 and curated by JAXA’s Institute of Space and Astronautical Sciences indicate strong model performance and transfer learning capabilities for future extraterrestrial applications.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100828"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221313372400043X/pdfft?md5=25e2760231044e2c4d963333551bb0c4&pid=1-s2.0-S221313372400043X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"YOLO-ET: A Machine Learning model for detecting, localising and classifying anthropogenic contaminants and extraterrestrial microparticles optimised for mobile processing systems\",\"authors\":\"L.J. Pinault , H. Yano , K. Okudaira , I.A. Crawford\",\"doi\":\"10.1016/j.ascom.2024.100828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Imminent robotic and human activities on the Moon and other planetary bodies would benefit from advanced <em>in situ</em> Computer Vision and Machine Learning capabilities to identify and quantify microparticle terrestrial contaminants, lunar regolith disturbances, the flux of interplanetary dust particles, possible interstellar dust, <span><math><mi>β</mi></math></span>-meteoroids, and secondary impact ejecta. The YOLO-ET (ExtraTerrestrial) algorithm, an innovation in this field, fine-tunes Tiny-YOLO to specifically address these challenges. Designed for coreML model transference to mobile devices, the algorithm facilitates edge computing in space environment conditions. YOLO-ET is deployable as an app on an iPhone with LabCam® optical enhancement, ready for space application ruggedisation. Training on images from the Tanpopo aerogel panels returned from Japan’s Kibo module of the International Space Station, YOLO-ET demonstrates a 90% detection rate for surface contaminant microparticles on the aerogels, and shows promising early results for detection of both microparticle contaminants on the Moon and for evaluating asteroid return samples. YOLO-ET’s application to identifying spacecraft-derived microparticles in lunar regolith simulant samples and SEM images of asteroid Ryugu samples returned by Hayabusa2 and curated by JAXA’s Institute of Space and Astronautical Sciences indicate strong model performance and transfer learning capabilities for future extraterrestrial applications.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"47 \",\"pages\":\"Article 100828\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221313372400043X/pdfft?md5=25e2760231044e2c4d963333551bb0c4&pid=1-s2.0-S221313372400043X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221313372400043X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221313372400043X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
YOLO-ET: A Machine Learning model for detecting, localising and classifying anthropogenic contaminants and extraterrestrial microparticles optimised for mobile processing systems
Imminent robotic and human activities on the Moon and other planetary bodies would benefit from advanced in situ Computer Vision and Machine Learning capabilities to identify and quantify microparticle terrestrial contaminants, lunar regolith disturbances, the flux of interplanetary dust particles, possible interstellar dust, -meteoroids, and secondary impact ejecta. The YOLO-ET (ExtraTerrestrial) algorithm, an innovation in this field, fine-tunes Tiny-YOLO to specifically address these challenges. Designed for coreML model transference to mobile devices, the algorithm facilitates edge computing in space environment conditions. YOLO-ET is deployable as an app on an iPhone with LabCam® optical enhancement, ready for space application ruggedisation. Training on images from the Tanpopo aerogel panels returned from Japan’s Kibo module of the International Space Station, YOLO-ET demonstrates a 90% detection rate for surface contaminant microparticles on the aerogels, and shows promising early results for detection of both microparticle contaminants on the Moon and for evaluating asteroid return samples. YOLO-ET’s application to identifying spacecraft-derived microparticles in lunar regolith simulant samples and SEM images of asteroid Ryugu samples returned by Hayabusa2 and curated by JAXA’s Institute of Space and Astronautical Sciences indicate strong model performance and transfer learning capabilities for future extraterrestrial applications.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.