热电发电系统智能 Runge Kutta 控制:利用处理器环路测试进行性能分析

IF 7.1 Q1 ENERGY & FUELS
Majad Mansoor , Mohamad Abou Houran , Nedaa Al-Tawalbeh , Muhammad Hamza Zafar , Naureen Akhtar
{"title":"热电发电系统智能 Runge Kutta 控制:利用处理器环路测试进行性能分析","authors":"Majad Mansoor ,&nbsp;Mohamad Abou Houran ,&nbsp;Nedaa Al-Tawalbeh ,&nbsp;Muhammad Hamza Zafar ,&nbsp;Naureen Akhtar","doi":"10.1016/j.ecmx.2024.100612","DOIUrl":null,"url":null,"abstract":"<div><p>As an emerging source of clean electrical power, Thermoelectric generation (TEG) finds its applications in heat removal and electricity generation as an efficient improvement tool for thermal devices utilizing fossil fuels. TEG exhibits low power density and its temperature distribution is usually non-uniform over thermal conductive surfaces. Due to the non-uniformity of heat flow and loose surface contact, non-uniform temperature distribution (NTD) appears on TEG surfaces and the TEG control problem becomes complex, multi-solution, nonlinear, and highly sensitive to operating conditions. The bypass diode activation of TEG systems streamlines the power flow in a string of series-connected modules, generating multiple peak points. Classical techniques fail to address these issues of multiple maxima and lose efficiency. To solve this problem, a novel SI-based optimization algorithm, Runge Kutta Method (RUN), is applied as MPPT control. To gauge the performance of the proposed controller several distinct case studies are used, including varying temperatures gradient, NTD, 24-hour thermal profile stochastic temperature, and experimental verification. Additionally, MPPT rating analysis, economic assessment, and statistical studies are done for comparison with other state-of-the-art control techniques. The minimum tracking and settling times have been improved by RUN to 180 ms. For the additional hardware implementation, the maximum levelized cost of energy (LCOE) is about 0.16 <span><math><mrow><mfrac><mi>$</mi><mrow><mi>kWh</mi></mrow></mfrac><mrow><mfenced><mrow><mfrac><mrow><mn>1.07</mn><mo>¥</mo></mrow><mrow><mi>kWh</mi></mrow></mfrac></mrow></mfenced></mrow><mo>.</mo></mrow></math></span> The power tracking efficiency of RUN can be above 99 % with energy harvest improvements of 6.3 %.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524000904/pdfft?md5=1b7227f0e68cfceca8c989c7f05b0091&pid=1-s2.0-S2590174524000904-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric power generation system intelligent Runge Kutta control: A performance analysis using processor in loop testing\",\"authors\":\"Majad Mansoor ,&nbsp;Mohamad Abou Houran ,&nbsp;Nedaa Al-Tawalbeh ,&nbsp;Muhammad Hamza Zafar ,&nbsp;Naureen Akhtar\",\"doi\":\"10.1016/j.ecmx.2024.100612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an emerging source of clean electrical power, Thermoelectric generation (TEG) finds its applications in heat removal and electricity generation as an efficient improvement tool for thermal devices utilizing fossil fuels. TEG exhibits low power density and its temperature distribution is usually non-uniform over thermal conductive surfaces. Due to the non-uniformity of heat flow and loose surface contact, non-uniform temperature distribution (NTD) appears on TEG surfaces and the TEG control problem becomes complex, multi-solution, nonlinear, and highly sensitive to operating conditions. The bypass diode activation of TEG systems streamlines the power flow in a string of series-connected modules, generating multiple peak points. Classical techniques fail to address these issues of multiple maxima and lose efficiency. To solve this problem, a novel SI-based optimization algorithm, Runge Kutta Method (RUN), is applied as MPPT control. To gauge the performance of the proposed controller several distinct case studies are used, including varying temperatures gradient, NTD, 24-hour thermal profile stochastic temperature, and experimental verification. Additionally, MPPT rating analysis, economic assessment, and statistical studies are done for comparison with other state-of-the-art control techniques. The minimum tracking and settling times have been improved by RUN to 180 ms. For the additional hardware implementation, the maximum levelized cost of energy (LCOE) is about 0.16 <span><math><mrow><mfrac><mi>$</mi><mrow><mi>kWh</mi></mrow></mfrac><mrow><mfenced><mrow><mfrac><mrow><mn>1.07</mn><mo>¥</mo></mrow><mrow><mi>kWh</mi></mrow></mfrac></mrow></mfenced></mrow><mo>.</mo></mrow></math></span> The power tracking efficiency of RUN can be above 99 % with energy harvest improvements of 6.3 %.</p></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524000904/pdfft?md5=1b7227f0e68cfceca8c989c7f05b0091&pid=1-s2.0-S2590174524000904-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524000904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524000904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

作为一种新兴的清洁电力来源,热发电(TEG)可用于散热和发电,是利用化石燃料的热设备的有效改进工具。TEG 的功率密度低,导热表面的温度分布通常不均匀。由于热流的不均匀性和松散的表面接触,TEG 表面出现了非均匀温度分布 (NTD),TEG 控制问题变得复杂、多解、非线性,并且对操作条件高度敏感。TEG 系统的旁路二极管激活可简化串联模块串中的功率流,从而产生多个峰值点。传统技术无法解决这些多峰值问题,而且会降低效率。为解决这一问题,一种基于 SI 的新型优化算法 Runge Kutta Method (RUN) 被应用于 MPPT 控制。为了衡量所提控制器的性能,使用了几个不同的案例研究,包括不同的温度梯度、NTD、24 小时热曲线随机温度和实验验证。此外,还进行了 MPPT 评级分析、经济评估和统计研究,以便与其他最先进的控制技术进行比较。最小跟踪和稳定时间提高了 RUN 至 180 毫秒。对于额外的硬件实施,最大平准化能源成本(LCOE)约为 0.16 $kWh1.07¥kWh。RUN 的功率跟踪效率可达 99 % 以上,能量收集效率提高了 6.3 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermoelectric power generation system intelligent Runge Kutta control: A performance analysis using processor in loop testing

As an emerging source of clean electrical power, Thermoelectric generation (TEG) finds its applications in heat removal and electricity generation as an efficient improvement tool for thermal devices utilizing fossil fuels. TEG exhibits low power density and its temperature distribution is usually non-uniform over thermal conductive surfaces. Due to the non-uniformity of heat flow and loose surface contact, non-uniform temperature distribution (NTD) appears on TEG surfaces and the TEG control problem becomes complex, multi-solution, nonlinear, and highly sensitive to operating conditions. The bypass diode activation of TEG systems streamlines the power flow in a string of series-connected modules, generating multiple peak points. Classical techniques fail to address these issues of multiple maxima and lose efficiency. To solve this problem, a novel SI-based optimization algorithm, Runge Kutta Method (RUN), is applied as MPPT control. To gauge the performance of the proposed controller several distinct case studies are used, including varying temperatures gradient, NTD, 24-hour thermal profile stochastic temperature, and experimental verification. Additionally, MPPT rating analysis, economic assessment, and statistical studies are done for comparison with other state-of-the-art control techniques. The minimum tracking and settling times have been improved by RUN to 180 ms. For the additional hardware implementation, the maximum levelized cost of energy (LCOE) is about 0.16 $kWh1.07¥kWh. The power tracking efficiency of RUN can be above 99 % with energy harvest improvements of 6.3 %.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信