Tina Schönberger, Marie Jakobs, Anna-Lena Friedel, Tina Hörbelt-Grünheidt, Bastian Tebbe, Oliver Witzke, Manfred Schedlowski, Joachim Fandrey
{"title":"暴露于常压低氧环境会影响体内人类全血细胞的急性炎症反应。","authors":"Tina Schönberger, Marie Jakobs, Anna-Lena Friedel, Tina Hörbelt-Grünheidt, Bastian Tebbe, Oliver Witzke, Manfred Schedlowski, Joachim Fandrey","doi":"10.1007/s00424-024-02969-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cells of the immune defence, especially leukocytes, often have to perform their function in tissue areas that are characterized by oxygen deficiency, so-called hypoxia. Physiological hypoxia significantly affects leukocyte function and controls the innate and adaptive immune response mainly through transcriptional gene regulation via the hypoxia-inducible factors (HIFs). Multiple pathogens including components of bacteria, such as lipopolysaccharides (LPS) trigger the activation of leukocytes. HIF pathway activation enables immune cells to adapt to both hypoxic environments in physiological and inflammatory settings and modulates immune cell responses through metabolism changes and crosstalk with other immune-relevant signalling pathways. To study the mutual influence of both processes in vivo, we used a human endotoxemia model, challenging participants with an intravenous LPS injection post or prior to a 4-h stay in a hypoxic chamber with normobaric hypoxia of 10.5% oxygen. We analysed changes in gene expression in whole blood cells and determined inflammatory markers to unveil the crosstalk between both processes. Our investigations showed differentially altered gene expression patterns of HIF and target genes upon in vivo treatment with LPS and hypoxia. Further, we found evidence for effects of hypoxic priming upon inflammation in combination with immunomodulatory effects in whole blood cells in vivo. Our work elucidates the complex interplay of hypoxic and inflammatory HIF regulation in human immune cells and offers new perspectives for further clinical research.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"1369-1381"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exposure to normobaric hypoxia shapes the acute inflammatory response in human whole blood cells in vivo.\",\"authors\":\"Tina Schönberger, Marie Jakobs, Anna-Lena Friedel, Tina Hörbelt-Grünheidt, Bastian Tebbe, Oliver Witzke, Manfred Schedlowski, Joachim Fandrey\",\"doi\":\"10.1007/s00424-024-02969-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells of the immune defence, especially leukocytes, often have to perform their function in tissue areas that are characterized by oxygen deficiency, so-called hypoxia. Physiological hypoxia significantly affects leukocyte function and controls the innate and adaptive immune response mainly through transcriptional gene regulation via the hypoxia-inducible factors (HIFs). Multiple pathogens including components of bacteria, such as lipopolysaccharides (LPS) trigger the activation of leukocytes. HIF pathway activation enables immune cells to adapt to both hypoxic environments in physiological and inflammatory settings and modulates immune cell responses through metabolism changes and crosstalk with other immune-relevant signalling pathways. To study the mutual influence of both processes in vivo, we used a human endotoxemia model, challenging participants with an intravenous LPS injection post or prior to a 4-h stay in a hypoxic chamber with normobaric hypoxia of 10.5% oxygen. We analysed changes in gene expression in whole blood cells and determined inflammatory markers to unveil the crosstalk between both processes. Our investigations showed differentially altered gene expression patterns of HIF and target genes upon in vivo treatment with LPS and hypoxia. Further, we found evidence for effects of hypoxic priming upon inflammation in combination with immunomodulatory effects in whole blood cells in vivo. Our work elucidates the complex interplay of hypoxic and inflammatory HIF regulation in human immune cells and offers new perspectives for further clinical research.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":\" \",\"pages\":\"1369-1381\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-024-02969-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-02969-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Exposure to normobaric hypoxia shapes the acute inflammatory response in human whole blood cells in vivo.
Cells of the immune defence, especially leukocytes, often have to perform their function in tissue areas that are characterized by oxygen deficiency, so-called hypoxia. Physiological hypoxia significantly affects leukocyte function and controls the innate and adaptive immune response mainly through transcriptional gene regulation via the hypoxia-inducible factors (HIFs). Multiple pathogens including components of bacteria, such as lipopolysaccharides (LPS) trigger the activation of leukocytes. HIF pathway activation enables immune cells to adapt to both hypoxic environments in physiological and inflammatory settings and modulates immune cell responses through metabolism changes and crosstalk with other immune-relevant signalling pathways. To study the mutual influence of both processes in vivo, we used a human endotoxemia model, challenging participants with an intravenous LPS injection post or prior to a 4-h stay in a hypoxic chamber with normobaric hypoxia of 10.5% oxygen. We analysed changes in gene expression in whole blood cells and determined inflammatory markers to unveil the crosstalk between both processes. Our investigations showed differentially altered gene expression patterns of HIF and target genes upon in vivo treatment with LPS and hypoxia. Further, we found evidence for effects of hypoxic priming upon inflammation in combination with immunomodulatory effects in whole blood cells in vivo. Our work elucidates the complex interplay of hypoxic and inflammatory HIF regulation in human immune cells and offers new perspectives for further clinical research.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.