{"title":"胚胎发生和神经发育中的逆转录载体","authors":"Mary Jo Talley, Michelle S Longworth","doi":"10.1042/BST20230757","DOIUrl":null,"url":null,"abstract":"<p><p>Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"1159-1171"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346457/pdf/","citationCount":"0","resultStr":"{\"title\":\"Retrotransposons in embryogenesis and neurodevelopment.\",\"authors\":\"Mary Jo Talley, Michelle S Longworth\",\"doi\":\"10.1042/BST20230757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"1159-1171\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20230757\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20230757","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Retrotransposons in embryogenesis and neurodevelopment.
Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.