Lila Berger, Ford Burles, Tejdeep Jaswal, Rebecca Williams, Giuseppe Iaria
{"title":"推进宇航员神经成像的现代磁共振成像模式。","authors":"Lila Berger, Ford Burles, Tejdeep Jaswal, Rebecca Williams, Giuseppe Iaria","doi":"10.3357/AMHP.6395.2024","DOIUrl":null,"url":null,"abstract":"<p><p><b>INTRODUCTION:</b> The rapid development of the space industry requires a deeper understanding of spaceflight's impact on the brain. MRI research reports brain volume changes following spaceflight in astronauts, potentially affecting cognition. Recently, we have demonstrated that this evidence of volumetric changes, as measured by typical T1-weighted sequences (e.g., magnetization-prepared rapid gradient echo sequence; MPRAGE), is error-prone due to the microgravity-related redistribution of cerebrospinal fluid in the brain. More modern neuroimaging methods, particularly dual-echo MPRAGE (DEMPRAGE) and magnetization-prepared rapid gradient echo sequence utilizing two inversion pulses (MP2RAGE), have been suggested to be resilient to this error. Here, we tested if these imaging modalities offered consistent segmentation performance improvements in some commonly employed neuroimaging software packages.<b>METHODS:</b> We conducted manual gray matter tissue segmentation in traditional T1w MRI images to utilize for comparison. Automated tissue segmentation was performed for traditional T1w imaging, as well as on DEMPRAGE and MP2RAGE images from the same subjects. Statistical analysis involved a comparison of total gray matter volumes for each modality, and the extent of tissue segmentation agreement was assessed using a test of similarity (Dice coefficient).<b>RESULTS:</b> Neither DEMPRAGE nor MP2RAGE exhibited consistent segmentation performance across all toolboxes tested.<b>DISCUSSION:</b> This research indicates that customized data collection and processing methods are necessary for reliable and valid structural MRI segmentation in astronauts, as current methods provide erroneous classification and hence inaccurate claims of neuroplastic brain changes in the astronaut population.<b>Berger L, Burles F, Jaswal T, Williams R, Iaria G. <i>Modern magnetic resonance imaging modalities to advance neuroimaging in astronauts</i>. Aerosp Med Hum Perform. 2024; 95(5):245-253.</b></p>","PeriodicalId":7463,"journal":{"name":"Aerospace medicine and human performance","volume":"95 5","pages":"245-253"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern Magnetic Resonance Imaging Modalities to Advance Neuroimaging in Astronauts.\",\"authors\":\"Lila Berger, Ford Burles, Tejdeep Jaswal, Rebecca Williams, Giuseppe Iaria\",\"doi\":\"10.3357/AMHP.6395.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>INTRODUCTION:</b> The rapid development of the space industry requires a deeper understanding of spaceflight's impact on the brain. MRI research reports brain volume changes following spaceflight in astronauts, potentially affecting cognition. Recently, we have demonstrated that this evidence of volumetric changes, as measured by typical T1-weighted sequences (e.g., magnetization-prepared rapid gradient echo sequence; MPRAGE), is error-prone due to the microgravity-related redistribution of cerebrospinal fluid in the brain. More modern neuroimaging methods, particularly dual-echo MPRAGE (DEMPRAGE) and magnetization-prepared rapid gradient echo sequence utilizing two inversion pulses (MP2RAGE), have been suggested to be resilient to this error. Here, we tested if these imaging modalities offered consistent segmentation performance improvements in some commonly employed neuroimaging software packages.<b>METHODS:</b> We conducted manual gray matter tissue segmentation in traditional T1w MRI images to utilize for comparison. Automated tissue segmentation was performed for traditional T1w imaging, as well as on DEMPRAGE and MP2RAGE images from the same subjects. Statistical analysis involved a comparison of total gray matter volumes for each modality, and the extent of tissue segmentation agreement was assessed using a test of similarity (Dice coefficient).<b>RESULTS:</b> Neither DEMPRAGE nor MP2RAGE exhibited consistent segmentation performance across all toolboxes tested.<b>DISCUSSION:</b> This research indicates that customized data collection and processing methods are necessary for reliable and valid structural MRI segmentation in astronauts, as current methods provide erroneous classification and hence inaccurate claims of neuroplastic brain changes in the astronaut population.<b>Berger L, Burles F, Jaswal T, Williams R, Iaria G. <i>Modern magnetic resonance imaging modalities to advance neuroimaging in astronauts</i>. Aerosp Med Hum Perform. 2024; 95(5):245-253.</b></p>\",\"PeriodicalId\":7463,\"journal\":{\"name\":\"Aerospace medicine and human performance\",\"volume\":\"95 5\",\"pages\":\"245-253\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace medicine and human performance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3357/AMHP.6395.2024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace medicine and human performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3357/AMHP.6395.2024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Modern Magnetic Resonance Imaging Modalities to Advance Neuroimaging in Astronauts.
INTRODUCTION: The rapid development of the space industry requires a deeper understanding of spaceflight's impact on the brain. MRI research reports brain volume changes following spaceflight in astronauts, potentially affecting cognition. Recently, we have demonstrated that this evidence of volumetric changes, as measured by typical T1-weighted sequences (e.g., magnetization-prepared rapid gradient echo sequence; MPRAGE), is error-prone due to the microgravity-related redistribution of cerebrospinal fluid in the brain. More modern neuroimaging methods, particularly dual-echo MPRAGE (DEMPRAGE) and magnetization-prepared rapid gradient echo sequence utilizing two inversion pulses (MP2RAGE), have been suggested to be resilient to this error. Here, we tested if these imaging modalities offered consistent segmentation performance improvements in some commonly employed neuroimaging software packages.METHODS: We conducted manual gray matter tissue segmentation in traditional T1w MRI images to utilize for comparison. Automated tissue segmentation was performed for traditional T1w imaging, as well as on DEMPRAGE and MP2RAGE images from the same subjects. Statistical analysis involved a comparison of total gray matter volumes for each modality, and the extent of tissue segmentation agreement was assessed using a test of similarity (Dice coefficient).RESULTS: Neither DEMPRAGE nor MP2RAGE exhibited consistent segmentation performance across all toolboxes tested.DISCUSSION: This research indicates that customized data collection and processing methods are necessary for reliable and valid structural MRI segmentation in astronauts, as current methods provide erroneous classification and hence inaccurate claims of neuroplastic brain changes in the astronaut population.Berger L, Burles F, Jaswal T, Williams R, Iaria G. Modern magnetic resonance imaging modalities to advance neuroimaging in astronauts. Aerosp Med Hum Perform. 2024; 95(5):245-253.
期刊介绍:
The peer-reviewed monthly journal, Aerospace Medicine and Human Performance (AMHP), formerly Aviation, Space, and Environmental Medicine, provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications. It is the most used and cited journal in its field. It is distributed to more than 80 nations.