{"title":"通过混合扫描电化学探针显微镜同时绘制电催化活性和选择性图。","authors":"C. Hyun Ryu, and , Hang Ren*, ","doi":"10.1021/acs.nanolett.4c01280","DOIUrl":null,"url":null,"abstract":"<p >Nanoscale scanning electrochemical probe microscopy started to elucidate the heterogeneity of electrocatalytic activity at electrode surfaces. However, understanding the heterogeneity in product selectivity, another crucial aspect of interfacial reactivity, remains challenging. Herein, we introduce a method combining scanning electrochemical microscopy (SECM) and scanning electrochemical cell microscopy (SECCM) to enable the spatially resolved mapping of both activity and selectivity in electrocatalysis. A dual-channel nanopipette probe was developed: one channel for activity mapping and the other for product detection with a high collection efficiency (>95%) and sensitivity. Simultaneous mapping of activity and selectivity in the oxygen reduction reaction (ORR) is demonstrated. Combined with colocalized crystal orientation mapping, we uncover the local electrocatalytic performance of ORR at different facets on polycrystalline Pt and Au. The high-resolution selectivity mapping enabled by our method with colocalized structural characterization can provide structure–activity-selectivity relationships that are often unavailable in ensemble measurement, holding promise for understanding key structural motifs controlling interfacial reactivity.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 20","pages":"6112–6116"},"PeriodicalIF":9.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Mapping of Electrocatalytic Activity and Selectivity via Hybrid Scanning Electrochemical Probe Microscopy\",\"authors\":\"C. Hyun Ryu, and , Hang Ren*, \",\"doi\":\"10.1021/acs.nanolett.4c01280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanoscale scanning electrochemical probe microscopy started to elucidate the heterogeneity of electrocatalytic activity at electrode surfaces. However, understanding the heterogeneity in product selectivity, another crucial aspect of interfacial reactivity, remains challenging. Herein, we introduce a method combining scanning electrochemical microscopy (SECM) and scanning electrochemical cell microscopy (SECCM) to enable the spatially resolved mapping of both activity and selectivity in electrocatalysis. A dual-channel nanopipette probe was developed: one channel for activity mapping and the other for product detection with a high collection efficiency (>95%) and sensitivity. Simultaneous mapping of activity and selectivity in the oxygen reduction reaction (ORR) is demonstrated. Combined with colocalized crystal orientation mapping, we uncover the local electrocatalytic performance of ORR at different facets on polycrystalline Pt and Au. The high-resolution selectivity mapping enabled by our method with colocalized structural characterization can provide structure–activity-selectivity relationships that are often unavailable in ensemble measurement, holding promise for understanding key structural motifs controlling interfacial reactivity.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"24 20\",\"pages\":\"6112–6116\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01280\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01280","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Simultaneous Mapping of Electrocatalytic Activity and Selectivity via Hybrid Scanning Electrochemical Probe Microscopy
Nanoscale scanning electrochemical probe microscopy started to elucidate the heterogeneity of electrocatalytic activity at electrode surfaces. However, understanding the heterogeneity in product selectivity, another crucial aspect of interfacial reactivity, remains challenging. Herein, we introduce a method combining scanning electrochemical microscopy (SECM) and scanning electrochemical cell microscopy (SECCM) to enable the spatially resolved mapping of both activity and selectivity in electrocatalysis. A dual-channel nanopipette probe was developed: one channel for activity mapping and the other for product detection with a high collection efficiency (>95%) and sensitivity. Simultaneous mapping of activity and selectivity in the oxygen reduction reaction (ORR) is demonstrated. Combined with colocalized crystal orientation mapping, we uncover the local electrocatalytic performance of ORR at different facets on polycrystalline Pt and Au. The high-resolution selectivity mapping enabled by our method with colocalized structural characterization can provide structure–activity-selectivity relationships that are often unavailable in ensemble measurement, holding promise for understanding key structural motifs controlling interfacial reactivity.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.