{"title":"大型腔体-分子系统极性振动光谱的全量子模拟。","authors":"Qi Yu*, and , Joel M. Bowman, ","doi":"10.1021/acs.jctc.4c00129","DOIUrl":null,"url":null,"abstract":"<p >The formation of molecular vibrational polaritons, arising from the interplay between molecular vibrations and infrared cavity modes, is a quantum phenomenon necessitating accurate quantum dynamical simulations. Here, we introduce the cavity vibrational self-consistent field/virtual state configuration interaction method, enabling quantum simulation of the vibrational spectra of many-molecule systems within the optical cavity. Focusing on the representative (H<sub>2</sub>O)<sub>21</sub> system, we showcase this parameter-free quantum approach’s ability to capture both linear and nonlinear vibrational spectral features. Our findings highlight the growing prominence of molecular couplings among OH stretches and bending excited bands with increased light-matter interaction, revealing distinctive nonlinear spectral features induced by vibrational strong coupling.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"20 10","pages":"4278–4287"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Quantum Simulation of Polaritonic Vibrational Spectra of Large Cavity-Molecule System\",\"authors\":\"Qi Yu*, and , Joel M. Bowman, \",\"doi\":\"10.1021/acs.jctc.4c00129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The formation of molecular vibrational polaritons, arising from the interplay between molecular vibrations and infrared cavity modes, is a quantum phenomenon necessitating accurate quantum dynamical simulations. Here, we introduce the cavity vibrational self-consistent field/virtual state configuration interaction method, enabling quantum simulation of the vibrational spectra of many-molecule systems within the optical cavity. Focusing on the representative (H<sub>2</sub>O)<sub>21</sub> system, we showcase this parameter-free quantum approach’s ability to capture both linear and nonlinear vibrational spectral features. Our findings highlight the growing prominence of molecular couplings among OH stretches and bending excited bands with increased light-matter interaction, revealing distinctive nonlinear spectral features induced by vibrational strong coupling.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"20 10\",\"pages\":\"4278–4287\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00129\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00129","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fully Quantum Simulation of Polaritonic Vibrational Spectra of Large Cavity-Molecule System
The formation of molecular vibrational polaritons, arising from the interplay between molecular vibrations and infrared cavity modes, is a quantum phenomenon necessitating accurate quantum dynamical simulations. Here, we introduce the cavity vibrational self-consistent field/virtual state configuration interaction method, enabling quantum simulation of the vibrational spectra of many-molecule systems within the optical cavity. Focusing on the representative (H2O)21 system, we showcase this parameter-free quantum approach’s ability to capture both linear and nonlinear vibrational spectral features. Our findings highlight the growing prominence of molecular couplings among OH stretches and bending excited bands with increased light-matter interaction, revealing distinctive nonlinear spectral features induced by vibrational strong coupling.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.