Fabio Rizzante, Edgar Maenosono, Ana Flávia Borges, Juliana Bombonatti, Sorin Teich, Adilson Furuse, Sérgio Ishikiriama
{"title":"厚度和修复系统对 CAD/CAM 微创咬合贴面机械性能的影响 - 体外研究。","authors":"Fabio Rizzante, Edgar Maenosono, Ana Flávia Borges, Juliana Bombonatti, Sorin Teich, Adilson Furuse, Sérgio Ishikiriama","doi":"10.3290/j.ijcd.b5290647","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study was to evaluate the physical-mechanical behavior of the occlusal veneers when subjected to thermomechanical cycling.</p><p><strong>Materials and methods: </strong>Sixty specimens were divided into 04 groups (n=15 per group), according with the different restorative materials and thicknesses: material - lithium dissilicate LD (IPS e.max CAD, Ivoclar Vivadent) and nano- ceramic-resins NCR (ESPE Lava Ultimate, 3M); thickness - 0.6 and 1.2mm. The occlusal veneers were bonded over human flattened fresh extracted molars with dual-polymerizing luting agent (Variolink N, Ivoclar Vivadent and RelyX Ultimate 3M) using the respective adhesive system following the selective-etch technique (self-etch in dentin and total etch in enamel). The resin cement was light cured for 40 seconds each face, using a LED light cure equipment (BlueStar II, Microdont, 1100 mW/cm2). The response variables consisted of veneer survival rates (crack formation, catastrophic cracks and debonding) when subjected to thermal cycling from 5° to 55° C and simultaneous mechanical cycling performed at load intensities of 100, 200, 300, 400 and 450N for 20,000 cycles each.</p><p><strong>Result: </strong>Data were submitted to the Kruskall Wallis test and Pairwise Comparison, adopting a significance level of 5%. NCRs presented a lower incidence of failures (p<0.05) when compared to LD. According to thickness factor, 1.2mm thick occlusal veneers withstand higher cycling loads.</p><p><strong>Conclusion: </strong>NCR occlusal veneers with 1.2mm thickness presented superior physical-mechanical behavior than lithium disilicate and 0.6mm restorations.</p>","PeriodicalId":48666,"journal":{"name":"International Journal of Computerized Dentistry","volume":"0 0","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of thickness and restorative system on the mechanical behavior of CAD/CAM minimally invasive occlusal veneers - in vitro study.\",\"authors\":\"Fabio Rizzante, Edgar Maenosono, Ana Flávia Borges, Juliana Bombonatti, Sorin Teich, Adilson Furuse, Sérgio Ishikiriama\",\"doi\":\"10.3290/j.ijcd.b5290647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>The aim of this study was to evaluate the physical-mechanical behavior of the occlusal veneers when subjected to thermomechanical cycling.</p><p><strong>Materials and methods: </strong>Sixty specimens were divided into 04 groups (n=15 per group), according with the different restorative materials and thicknesses: material - lithium dissilicate LD (IPS e.max CAD, Ivoclar Vivadent) and nano- ceramic-resins NCR (ESPE Lava Ultimate, 3M); thickness - 0.6 and 1.2mm. The occlusal veneers were bonded over human flattened fresh extracted molars with dual-polymerizing luting agent (Variolink N, Ivoclar Vivadent and RelyX Ultimate 3M) using the respective adhesive system following the selective-etch technique (self-etch in dentin and total etch in enamel). The resin cement was light cured for 40 seconds each face, using a LED light cure equipment (BlueStar II, Microdont, 1100 mW/cm2). The response variables consisted of veneer survival rates (crack formation, catastrophic cracks and debonding) when subjected to thermal cycling from 5° to 55° C and simultaneous mechanical cycling performed at load intensities of 100, 200, 300, 400 and 450N for 20,000 cycles each.</p><p><strong>Result: </strong>Data were submitted to the Kruskall Wallis test and Pairwise Comparison, adopting a significance level of 5%. NCRs presented a lower incidence of failures (p<0.05) when compared to LD. According to thickness factor, 1.2mm thick occlusal veneers withstand higher cycling loads.</p><p><strong>Conclusion: </strong>NCR occlusal veneers with 1.2mm thickness presented superior physical-mechanical behavior than lithium disilicate and 0.6mm restorations.</p>\",\"PeriodicalId\":48666,\"journal\":{\"name\":\"International Journal of Computerized Dentistry\",\"volume\":\"0 0\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computerized Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3290/j.ijcd.b5290647\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computerized Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3290/j.ijcd.b5290647","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Influence of thickness and restorative system on the mechanical behavior of CAD/CAM minimally invasive occlusal veneers - in vitro study.
Aim: The aim of this study was to evaluate the physical-mechanical behavior of the occlusal veneers when subjected to thermomechanical cycling.
Materials and methods: Sixty specimens were divided into 04 groups (n=15 per group), according with the different restorative materials and thicknesses: material - lithium dissilicate LD (IPS e.max CAD, Ivoclar Vivadent) and nano- ceramic-resins NCR (ESPE Lava Ultimate, 3M); thickness - 0.6 and 1.2mm. The occlusal veneers were bonded over human flattened fresh extracted molars with dual-polymerizing luting agent (Variolink N, Ivoclar Vivadent and RelyX Ultimate 3M) using the respective adhesive system following the selective-etch technique (self-etch in dentin and total etch in enamel). The resin cement was light cured for 40 seconds each face, using a LED light cure equipment (BlueStar II, Microdont, 1100 mW/cm2). The response variables consisted of veneer survival rates (crack formation, catastrophic cracks and debonding) when subjected to thermal cycling from 5° to 55° C and simultaneous mechanical cycling performed at load intensities of 100, 200, 300, 400 and 450N for 20,000 cycles each.
Result: Data were submitted to the Kruskall Wallis test and Pairwise Comparison, adopting a significance level of 5%. NCRs presented a lower incidence of failures (p<0.05) when compared to LD. According to thickness factor, 1.2mm thick occlusal veneers withstand higher cycling loads.
Conclusion: NCR occlusal veneers with 1.2mm thickness presented superior physical-mechanical behavior than lithium disilicate and 0.6mm restorations.
期刊介绍:
This journal explores the myriad innovations in the emerging field of computerized dentistry and how to integrate them into clinical practice. The bulk of the journal is devoted to the science of computer-assisted dentistry, with research articles and clinical reports on all aspects of computer-based diagnostic and therapeutic applications, with special emphasis placed on CAD/CAM and image-processing systems. Articles also address the use of computer-based communication to support patient care, assess the quality of care, and enhance clinical decision making. The journal is presented in a bilingual format, with each issue offering three types of articles: science-based, application-based, and national society reports.