{"title":"生理学中的扩散数学模型。","authors":"J Janáček","doi":"10.33549/physiolres.935292","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412344/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mathematical Models of Diffusion in Physiology.\",\"authors\":\"J Janáček\",\"doi\":\"10.33549/physiolres.935292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.33549/physiolres.935292\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33549/physiolres.935292","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
扩散是由分子的混乱热运动引起的一种质量输运现象。利用分子局部浓度的进化微分方程而不是分子路径的完整信息,可以简化特定领域的输运研究[1]。流体混合物中的化合物倾向于通过扩散来消除空间浓度的不均匀性。在普通扩散中,传输速率与化合物的浓度梯度和扩散系数成正比。不断变化的浓度曲线 c(x,t) 是进化偏微分方程 deltac/deltat=DDeltac 的解,其中 D 是扩散系数,Delta 是拉普拉斯算子。方程的域可以是空间中的一个区域、平面或直线、流形(如嵌入空间的曲面)或图形。拉普拉斯算子对定义在给定域上的平滑函数进行运算。我们可以利用扩散模型完成多种任务,例如:a) 设计通过共聚焦显微镜精确测量质膜中受体流动性的方法[2];b) 评估发育中心脏小梁的复杂几何形状[3],以证明胚胎心室内的传导路径是由小梁的几何形状决定的。
Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.