Nermeen Bastawy, Aliaa E M K El-Mosallamy, Samira H Aljuaydi, Huda O AbuBakr, Rabab Ahmed Rasheed, A S Sadek, R T Khattab, Wael Botros Abualyamin, Shereen E Abdelaal, Amy F Boushra
{"title":"将 SGLT2 抑制剂作为甲状腺功能亢进所致大鼠心肺损伤的一种潜在治疗方法。","authors":"Nermeen Bastawy, Aliaa E M K El-Mosallamy, Samira H Aljuaydi, Huda O AbuBakr, Rabab Ahmed Rasheed, A S Sadek, R T Khattab, Wael Botros Abualyamin, Shereen E Abdelaal, Amy F Boushra","doi":"10.1007/s00424-024-02967-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperthyroidism-induced cardiac disease is an evolving health, economic, and social problem affecting well-being. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2-I) have been proven to be cardio-protective when administered in cases of heart failure. This study intended to investigate the potential therapeutic effect of SGLT2-I on hyperthyroidism-related cardiopulmonary injury, targeting the possible underlying mechanisms. The impact of the SGLT2-I, dapagliflozin (DAPA), (1 mg/kg/day, p.o) on LT4 (0.3 mg/kg/day, i.p)-induced cardiopulmonary injury was investigated in rats. The body weight, ECG, and serum hormones were evaluated. Also, redox balance, DNA fragmentation, inflammatory cytokines, and PCR quantification in heart and lung tissues were employed to investigate the effect of DAPA in experimentally induced hyperthyroid rats along with histological and immunohistochemical examination. Coadministration of DAPA with LT4 effectively restored all serum biomarkers to nearly average levels, improved ECG findings, and reinstated the redox balance. Also, DAPA could improve DNA fragmentation, elevate mtTFA, and lessen TNF-α and IGF-1 gene expression in both organs of treated animals. Furthermore, DAPA markedly improved the necro-inflammatory and fibrotic cardiopulmonary histological alterations and reduced the tissue immunohistochemical expression of TNF-α and caspase-3. Although further clinical and deep molecular studies are required before transposing to humans, our study emphasized DAPA's potential to relieve hyperthyroidism-induced cardiopulmonary injury in rats through its antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as via antagonizing the sympathetic over activity.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"1125-1143"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166784/pdf/","citationCount":"0","resultStr":"{\"title\":\"SGLT2 inhibitor as a potential therapeutic approach in hyperthyroidism-induced cardiopulmonary injury in rats.\",\"authors\":\"Nermeen Bastawy, Aliaa E M K El-Mosallamy, Samira H Aljuaydi, Huda O AbuBakr, Rabab Ahmed Rasheed, A S Sadek, R T Khattab, Wael Botros Abualyamin, Shereen E Abdelaal, Amy F Boushra\",\"doi\":\"10.1007/s00424-024-02967-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperthyroidism-induced cardiac disease is an evolving health, economic, and social problem affecting well-being. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2-I) have been proven to be cardio-protective when administered in cases of heart failure. This study intended to investigate the potential therapeutic effect of SGLT2-I on hyperthyroidism-related cardiopulmonary injury, targeting the possible underlying mechanisms. The impact of the SGLT2-I, dapagliflozin (DAPA), (1 mg/kg/day, p.o) on LT4 (0.3 mg/kg/day, i.p)-induced cardiopulmonary injury was investigated in rats. The body weight, ECG, and serum hormones were evaluated. Also, redox balance, DNA fragmentation, inflammatory cytokines, and PCR quantification in heart and lung tissues were employed to investigate the effect of DAPA in experimentally induced hyperthyroid rats along with histological and immunohistochemical examination. Coadministration of DAPA with LT4 effectively restored all serum biomarkers to nearly average levels, improved ECG findings, and reinstated the redox balance. Also, DAPA could improve DNA fragmentation, elevate mtTFA, and lessen TNF-α and IGF-1 gene expression in both organs of treated animals. Furthermore, DAPA markedly improved the necro-inflammatory and fibrotic cardiopulmonary histological alterations and reduced the tissue immunohistochemical expression of TNF-α and caspase-3. Although further clinical and deep molecular studies are required before transposing to humans, our study emphasized DAPA's potential to relieve hyperthyroidism-induced cardiopulmonary injury in rats through its antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as via antagonizing the sympathetic over activity.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":\" \",\"pages\":\"1125-1143\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166784/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-024-02967-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-02967-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
SGLT2 inhibitor as a potential therapeutic approach in hyperthyroidism-induced cardiopulmonary injury in rats.
Hyperthyroidism-induced cardiac disease is an evolving health, economic, and social problem affecting well-being. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2-I) have been proven to be cardio-protective when administered in cases of heart failure. This study intended to investigate the potential therapeutic effect of SGLT2-I on hyperthyroidism-related cardiopulmonary injury, targeting the possible underlying mechanisms. The impact of the SGLT2-I, dapagliflozin (DAPA), (1 mg/kg/day, p.o) on LT4 (0.3 mg/kg/day, i.p)-induced cardiopulmonary injury was investigated in rats. The body weight, ECG, and serum hormones were evaluated. Also, redox balance, DNA fragmentation, inflammatory cytokines, and PCR quantification in heart and lung tissues were employed to investigate the effect of DAPA in experimentally induced hyperthyroid rats along with histological and immunohistochemical examination. Coadministration of DAPA with LT4 effectively restored all serum biomarkers to nearly average levels, improved ECG findings, and reinstated the redox balance. Also, DAPA could improve DNA fragmentation, elevate mtTFA, and lessen TNF-α and IGF-1 gene expression in both organs of treated animals. Furthermore, DAPA markedly improved the necro-inflammatory and fibrotic cardiopulmonary histological alterations and reduced the tissue immunohistochemical expression of TNF-α and caspase-3. Although further clinical and deep molecular studies are required before transposing to humans, our study emphasized DAPA's potential to relieve hyperthyroidism-induced cardiopulmonary injury in rats through its antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as via antagonizing the sympathetic over activity.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.