通过低资源感知表征学习对 T 细胞受体和 T 细胞转录组进行统一的跨模态整合与分析。

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2024-05-08 Epub Date: 2024-04-29 DOI:10.1016/j.xgen.2024.100553
Yicheng Gao, Kejing Dong, Yuli Gao, Xuan Jin, Jingya Yang, Gang Yan, Qi Liu
{"title":"通过低资源感知表征学习对 T 细胞受体和 T 细胞转录组进行统一的跨模态整合与分析。","authors":"Yicheng Gao, Kejing Dong, Yuli Gao, Xuan Jin, Jingya Yang, Gang Yan, Qi Liu","doi":"10.1016/j.xgen.2024.100553","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) and T cell receptor sequencing (TCR-seq) are pivotal for investigating T cell heterogeneity. Integrating these modalities, which is expected to uncover profound insights in immunology that might otherwise go unnoticed with a single modality, faces computational challenges due to the low-resource characteristics of the multimodal data. Herein, we present UniTCR, a novel low-resource-aware multimodal representation learning framework designed for the unified cross-modality integration, enabling comprehensive T cell analysis. By designing a dual-modality contrastive learning module and a single-modality preservation module to effectively embed each modality into a common latent space, UniTCR demonstrates versatility in connecting TCR sequences with T cell transcriptomes across various tasks, including single-modality analysis, modality gap analysis, epitope-TCR binding prediction, and TCR profile cross-modality generation, in a low-resource-aware way. Extensive evaluations conducted on multiple scRNA-seq/TCR-seq paired datasets showed the superior performance of UniTCR, exhibiting the ability of exploring the complexity of immune system.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100553"},"PeriodicalIF":11.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099349/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unified cross-modality integration and analysis of T cell receptors and T cell transcriptomes by low-resource-aware representation learning.\",\"authors\":\"Yicheng Gao, Kejing Dong, Yuli Gao, Xuan Jin, Jingya Yang, Gang Yan, Qi Liu\",\"doi\":\"10.1016/j.xgen.2024.100553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) and T cell receptor sequencing (TCR-seq) are pivotal for investigating T cell heterogeneity. Integrating these modalities, which is expected to uncover profound insights in immunology that might otherwise go unnoticed with a single modality, faces computational challenges due to the low-resource characteristics of the multimodal data. Herein, we present UniTCR, a novel low-resource-aware multimodal representation learning framework designed for the unified cross-modality integration, enabling comprehensive T cell analysis. By designing a dual-modality contrastive learning module and a single-modality preservation module to effectively embed each modality into a common latent space, UniTCR demonstrates versatility in connecting TCR sequences with T cell transcriptomes across various tasks, including single-modality analysis, modality gap analysis, epitope-TCR binding prediction, and TCR profile cross-modality generation, in a low-resource-aware way. Extensive evaluations conducted on multiple scRNA-seq/TCR-seq paired datasets showed the superior performance of UniTCR, exhibiting the ability of exploring the complexity of immune system.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100553\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099349/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA 测序(scRNA-seq)和 T 细胞受体测序(TCR-seq)是研究 T 细胞异质性的关键。由于多模态数据的低资源特性,将这些模态整合在一起面临着计算上的挑战。在此,我们提出了 UniTCR,这是一种新型的低资源感知多模态表征学习框架,旨在进行统一的跨模态整合,从而实现全面的 T 细胞分析。UniTCR 设计了双模态对比学习模块和单模态保存模块,将每种模态有效地嵌入到一个共同的潜在空间中,从而以一种低资源感知的方式在各种任务中展示了连接 TCR 序列和 T 细胞转录组的多功能性,包括单模态分析、模态差距分析、表位-TCR 结合预测和 TCR 图谱跨模态生成。在多个scRNA-seq/TCR-seq配对数据集上进行的广泛评估表明,UniTCR性能优越,具有探索免疫系统复杂性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified cross-modality integration and analysis of T cell receptors and T cell transcriptomes by low-resource-aware representation learning.

Single-cell RNA sequencing (scRNA-seq) and T cell receptor sequencing (TCR-seq) are pivotal for investigating T cell heterogeneity. Integrating these modalities, which is expected to uncover profound insights in immunology that might otherwise go unnoticed with a single modality, faces computational challenges due to the low-resource characteristics of the multimodal data. Herein, we present UniTCR, a novel low-resource-aware multimodal representation learning framework designed for the unified cross-modality integration, enabling comprehensive T cell analysis. By designing a dual-modality contrastive learning module and a single-modality preservation module to effectively embed each modality into a common latent space, UniTCR demonstrates versatility in connecting TCR sequences with T cell transcriptomes across various tasks, including single-modality analysis, modality gap analysis, epitope-TCR binding prediction, and TCR profile cross-modality generation, in a low-resource-aware way. Extensive evaluations conducted on multiple scRNA-seq/TCR-seq paired datasets showed the superior performance of UniTCR, exhibiting the ability of exploring the complexity of immune system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信