{"title":"利用基于多参数磁共振成像的诊断算法区分肾上腺皮质癌和贫脂肾上腺腺瘤。","authors":"","doi":"10.1016/j.diii.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>The purpose of this study was to evaluate the capabilities of multiparametric magnetic resonance imaging (MRI) in differentiating between lipid-poor adrenal adenoma (LPAA) and adrenocortical carcinoma (ACC).</div></div><div><h3>Materials and methods</h3><div>Patients of two centers who underwent surgical resection of LPAA or ACC after multiparametric MRI were retrospectively included. A training cohort was used to build a diagnostic algorithm obtained through recursive partitioning based on multiparametric MRI variables, including apparent diffusion coefficient and chemical shift signal ratio (<em>i.e.</em>, tumor signal intensity index). The diagnostic performances of the multiparametric MRI-based algorithm were evaluated using a validation cohort, alone first and then in association with adrenal tumor size using a cut-off of 4 cm. Performances of the diagnostic algorithm for the diagnosis of ACC <em>vs.</em> LPAA were calculated using pathology as the reference standard.</div></div><div><h3>Results</h3><div>Fifty-four patients (27 with LPAA and 27 with ACC; 37 women; mean age, 48.5 ± 13.3 [standard deviation (SD)] years) were used as the training cohort and 61 patients (24 with LPAA and 37 with ACC; 47 women; mean age, 49 ± 11.7 [SD] years) were used as the validation cohort. In the validation cohort, the diagnostic algorithm yielded best accuracy for the diagnosis of ACC <em>vs.</em> LPAA (75%; 46/61; 95% CI: 55–88) when used without lesion size. Best sensitivity was obtained with the association of the diagnostic algorithm with tumor size (96%; 23/24; 95% CI: 80–99). Best specificity was obtained with the diagnostic algorithm used alone (76%; 28/37; 95% CI: 60–87).</div></div><div><h3>Conclusion</h3><div>A multiparametric MRI-based diagnostic algorithm that includes apparent diffusion coefficient and tumor signal intensity index helps discriminate between ACC and LPAA with high degrees of specificity and accuracy. The association of the multiparametric MRI-based diagnostic algorithm with adrenal lesion size helps maximize the sensitivity of multiparametric MRI for the diagnosis of ACC.</div></div>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiation between adrenocortical carcinoma and lipid-poor adrenal adenoma using a multiparametric MRI-based diagnostic algorithm\",\"authors\":\"\",\"doi\":\"10.1016/j.diii.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>The purpose of this study was to evaluate the capabilities of multiparametric magnetic resonance imaging (MRI) in differentiating between lipid-poor adrenal adenoma (LPAA) and adrenocortical carcinoma (ACC).</div></div><div><h3>Materials and methods</h3><div>Patients of two centers who underwent surgical resection of LPAA or ACC after multiparametric MRI were retrospectively included. A training cohort was used to build a diagnostic algorithm obtained through recursive partitioning based on multiparametric MRI variables, including apparent diffusion coefficient and chemical shift signal ratio (<em>i.e.</em>, tumor signal intensity index). The diagnostic performances of the multiparametric MRI-based algorithm were evaluated using a validation cohort, alone first and then in association with adrenal tumor size using a cut-off of 4 cm. Performances of the diagnostic algorithm for the diagnosis of ACC <em>vs.</em> LPAA were calculated using pathology as the reference standard.</div></div><div><h3>Results</h3><div>Fifty-four patients (27 with LPAA and 27 with ACC; 37 women; mean age, 48.5 ± 13.3 [standard deviation (SD)] years) were used as the training cohort and 61 patients (24 with LPAA and 37 with ACC; 47 women; mean age, 49 ± 11.7 [SD] years) were used as the validation cohort. In the validation cohort, the diagnostic algorithm yielded best accuracy for the diagnosis of ACC <em>vs.</em> LPAA (75%; 46/61; 95% CI: 55–88) when used without lesion size. Best sensitivity was obtained with the association of the diagnostic algorithm with tumor size (96%; 23/24; 95% CI: 80–99). Best specificity was obtained with the diagnostic algorithm used alone (76%; 28/37; 95% CI: 60–87).</div></div><div><h3>Conclusion</h3><div>A multiparametric MRI-based diagnostic algorithm that includes apparent diffusion coefficient and tumor signal intensity index helps discriminate between ACC and LPAA with high degrees of specificity and accuracy. The association of the multiparametric MRI-based diagnostic algorithm with adrenal lesion size helps maximize the sensitivity of multiparametric MRI for the diagnosis of ACC.</div></div>\",\"PeriodicalId\":48656,\"journal\":{\"name\":\"Diagnostic and Interventional Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and Interventional Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211568424000810\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211568424000810","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Differentiation between adrenocortical carcinoma and lipid-poor adrenal adenoma using a multiparametric MRI-based diagnostic algorithm
Purpose
The purpose of this study was to evaluate the capabilities of multiparametric magnetic resonance imaging (MRI) in differentiating between lipid-poor adrenal adenoma (LPAA) and adrenocortical carcinoma (ACC).
Materials and methods
Patients of two centers who underwent surgical resection of LPAA or ACC after multiparametric MRI were retrospectively included. A training cohort was used to build a diagnostic algorithm obtained through recursive partitioning based on multiparametric MRI variables, including apparent diffusion coefficient and chemical shift signal ratio (i.e., tumor signal intensity index). The diagnostic performances of the multiparametric MRI-based algorithm were evaluated using a validation cohort, alone first and then in association with adrenal tumor size using a cut-off of 4 cm. Performances of the diagnostic algorithm for the diagnosis of ACC vs. LPAA were calculated using pathology as the reference standard.
Results
Fifty-four patients (27 with LPAA and 27 with ACC; 37 women; mean age, 48.5 ± 13.3 [standard deviation (SD)] years) were used as the training cohort and 61 patients (24 with LPAA and 37 with ACC; 47 women; mean age, 49 ± 11.7 [SD] years) were used as the validation cohort. In the validation cohort, the diagnostic algorithm yielded best accuracy for the diagnosis of ACC vs. LPAA (75%; 46/61; 95% CI: 55–88) when used without lesion size. Best sensitivity was obtained with the association of the diagnostic algorithm with tumor size (96%; 23/24; 95% CI: 80–99). Best specificity was obtained with the diagnostic algorithm used alone (76%; 28/37; 95% CI: 60–87).
Conclusion
A multiparametric MRI-based diagnostic algorithm that includes apparent diffusion coefficient and tumor signal intensity index helps discriminate between ACC and LPAA with high degrees of specificity and accuracy. The association of the multiparametric MRI-based diagnostic algorithm with adrenal lesion size helps maximize the sensitivity of multiparametric MRI for the diagnosis of ACC.
期刊介绍:
Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English.
Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.