有限认知负荷下的贝叶斯强化学习

Q1 Social Sciences
Open Mind Pub Date : 2024-04-03 eCollection Date: 2024-01-01 DOI:10.1162/opmi_a_00132
Dilip Arumugam, Mark K Ho, Noah D Goodman, Benjamin Van Roy
{"title":"有限认知负荷下的贝叶斯强化学习","authors":"Dilip Arumugam, Mark K Ho, Noah D Goodman, Benjamin Van Roy","doi":"10.1162/opmi_a_00132","DOIUrl":null,"url":null,"abstract":"<p><p>All biological and artificial agents must act given limits on their ability to acquire and process information. As such, a general theory of adaptive behavior should be able to account for the complex interactions between an agent's learning history, decisions, and capacity constraints. Recent work in computer science has begun to clarify the principles that shape these dynamics by bridging ideas from <i>reinforcement learning</i>, <i>Bayesian decision-making</i>, and <i>rate-distortion theory</i>. This body of work provides an account of <i>capacity-limited Bayesian reinforcement learning</i>, a unifying normative framework for modeling the effect of processing constraints on learning and action selection. Here, we provide an accessible review of recent algorithms and theoretical results in this setting, paying special attention to how these ideas can be applied to studying questions in the cognitive and behavioral sciences.</p>","PeriodicalId":32558,"journal":{"name":"Open Mind","volume":"8 ","pages":"395-438"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045037/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian Reinforcement Learning With Limited Cognitive Load.\",\"authors\":\"Dilip Arumugam, Mark K Ho, Noah D Goodman, Benjamin Van Roy\",\"doi\":\"10.1162/opmi_a_00132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All biological and artificial agents must act given limits on their ability to acquire and process information. As such, a general theory of adaptive behavior should be able to account for the complex interactions between an agent's learning history, decisions, and capacity constraints. Recent work in computer science has begun to clarify the principles that shape these dynamics by bridging ideas from <i>reinforcement learning</i>, <i>Bayesian decision-making</i>, and <i>rate-distortion theory</i>. This body of work provides an account of <i>capacity-limited Bayesian reinforcement learning</i>, a unifying normative framework for modeling the effect of processing constraints on learning and action selection. Here, we provide an accessible review of recent algorithms and theoretical results in this setting, paying special attention to how these ideas can be applied to studying questions in the cognitive and behavioral sciences.</p>\",\"PeriodicalId\":32558,\"journal\":{\"name\":\"Open Mind\",\"volume\":\"8 \",\"pages\":\"395-438\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045037/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mind\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/opmi_a_00132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/opmi_a_00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

所有生物和人工行为主体都必须在获取和处理信息的能力受到限制的情况下采取行动。因此,适应行为的一般理论应该能够解释代理的学习历史、决策和能力限制之间复杂的相互作用。计算机科学领域的最新研究已开始通过连接强化学习、贝叶斯决策和速率失真理论等思想,阐明形成这些动态变化的原理。这一系列工作对能力受限的贝叶斯强化学习进行了阐述,这是一个统一的规范框架,用于模拟处理约束对学习和行动选择的影响。在此,我们将对这一环境中的最新算法和理论成果进行通俗易懂的评述,并特别关注如何将这些思想应用于研究认知科学和行为科学中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Reinforcement Learning With Limited Cognitive Load.

All biological and artificial agents must act given limits on their ability to acquire and process information. As such, a general theory of adaptive behavior should be able to account for the complex interactions between an agent's learning history, decisions, and capacity constraints. Recent work in computer science has begun to clarify the principles that shape these dynamics by bridging ideas from reinforcement learning, Bayesian decision-making, and rate-distortion theory. This body of work provides an account of capacity-limited Bayesian reinforcement learning, a unifying normative framework for modeling the effect of processing constraints on learning and action selection. Here, we provide an accessible review of recent algorithms and theoretical results in this setting, paying special attention to how these ideas can be applied to studying questions in the cognitive and behavioral sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mind
Open Mind Social Sciences-Linguistics and Language
CiteScore
3.20
自引率
0.00%
发文量
15
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信