{"title":"增强心肌组织可视化:梯度旋转 Echo-STIR 和传统 STIR 成像的心血管磁共振对比研究。","authors":"Sadegh Dehghani, Shapoor Shirani, Elahe Jazayeri Gharebagh","doi":"10.1155/2024/8456669","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study is aimed at evaluating the efficacy of the gradient-spin echo- (GraSE-) based short tau inversion recovery (STIR) sequence (GraSE-STIR) in cardiovascular magnetic resonance (CMR) imaging compared to the conventional turbo spin echo- (TSE-) based STIR sequence, specifically focusing on image quality, specific absorption rate (SAR), and image acquisition time.</p><p><strong>Methods: </strong>In a prospective study, we examined forty-four normal volunteers and seventeen patients referred for CMR imaging using conventional STIR and GraSE-STIR techniques. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), image quality, <i>T</i><sub>2</sub> signal intensity (SI) ratio, SAR, and image acquisition time were compared between both sequences.</p><p><strong>Results: </strong>GraSE-STIR showed significant improvements in image quality (4.15 ± 0.8 vs. 3.34 ± 0.9, <i>p</i> = 0.024) and cardiac motion artifact reduction (7 vs. 18 out of 53, <i>p</i> = 0.038) compared to conventional STIR. Furthermore, the acquisition time (27.17 ± 3.53 vs. 36.9 ± 4.08 seconds, <i>p</i> = 0.041) and the local torso SAR (<13% vs. <17%, <i>p</i> = 0.047) were significantly lower for GraSE-STIR compared to conventional STIR in short-axis plan. However, no significant differences were shown in <i>T</i><sub>2</sub> SI ratio (<i>p</i> = 0.141), SNR (<i>p</i> = 0.093), CNR (<i>p</i> = 0.068), and SAR (<i>p</i> = 0.071) between these two sequences.</p><p><strong>Conclusions: </strong>GraSE-STIR offers notable advantages over conventional STIR sequence, with improved image quality, reduced motion artifacts, and shorter acquisition times. These findings highlight the potential of GraSE-STIR as a valuable technique for routine clinical CMR imaging.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2024 ","pages":"8456669"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Myocardial Tissue Visualization: A Comparative Cardiovascular Magnetic Resonance Study of Gradient-Spin Echo-STIR and Conventional STIR Imaging.\",\"authors\":\"Sadegh Dehghani, Shapoor Shirani, Elahe Jazayeri Gharebagh\",\"doi\":\"10.1155/2024/8456669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study is aimed at evaluating the efficacy of the gradient-spin echo- (GraSE-) based short tau inversion recovery (STIR) sequence (GraSE-STIR) in cardiovascular magnetic resonance (CMR) imaging compared to the conventional turbo spin echo- (TSE-) based STIR sequence, specifically focusing on image quality, specific absorption rate (SAR), and image acquisition time.</p><p><strong>Methods: </strong>In a prospective study, we examined forty-four normal volunteers and seventeen patients referred for CMR imaging using conventional STIR and GraSE-STIR techniques. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), image quality, <i>T</i><sub>2</sub> signal intensity (SI) ratio, SAR, and image acquisition time were compared between both sequences.</p><p><strong>Results: </strong>GraSE-STIR showed significant improvements in image quality (4.15 ± 0.8 vs. 3.34 ± 0.9, <i>p</i> = 0.024) and cardiac motion artifact reduction (7 vs. 18 out of 53, <i>p</i> = 0.038) compared to conventional STIR. Furthermore, the acquisition time (27.17 ± 3.53 vs. 36.9 ± 4.08 seconds, <i>p</i> = 0.041) and the local torso SAR (<13% vs. <17%, <i>p</i> = 0.047) were significantly lower for GraSE-STIR compared to conventional STIR in short-axis plan. However, no significant differences were shown in <i>T</i><sub>2</sub> SI ratio (<i>p</i> = 0.141), SNR (<i>p</i> = 0.093), CNR (<i>p</i> = 0.068), and SAR (<i>p</i> = 0.071) between these two sequences.</p><p><strong>Conclusions: </strong>GraSE-STIR offers notable advantages over conventional STIR sequence, with improved image quality, reduced motion artifacts, and shorter acquisition times. These findings highlight the potential of GraSE-STIR as a valuable technique for routine clinical CMR imaging.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2024 \",\"pages\":\"8456669\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8456669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/8456669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhanced Myocardial Tissue Visualization: A Comparative Cardiovascular Magnetic Resonance Study of Gradient-Spin Echo-STIR and Conventional STIR Imaging.
Purpose: This study is aimed at evaluating the efficacy of the gradient-spin echo- (GraSE-) based short tau inversion recovery (STIR) sequence (GraSE-STIR) in cardiovascular magnetic resonance (CMR) imaging compared to the conventional turbo spin echo- (TSE-) based STIR sequence, specifically focusing on image quality, specific absorption rate (SAR), and image acquisition time.
Methods: In a prospective study, we examined forty-four normal volunteers and seventeen patients referred for CMR imaging using conventional STIR and GraSE-STIR techniques. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), image quality, T2 signal intensity (SI) ratio, SAR, and image acquisition time were compared between both sequences.
Results: GraSE-STIR showed significant improvements in image quality (4.15 ± 0.8 vs. 3.34 ± 0.9, p = 0.024) and cardiac motion artifact reduction (7 vs. 18 out of 53, p = 0.038) compared to conventional STIR. Furthermore, the acquisition time (27.17 ± 3.53 vs. 36.9 ± 4.08 seconds, p = 0.041) and the local torso SAR (<13% vs. <17%, p = 0.047) were significantly lower for GraSE-STIR compared to conventional STIR in short-axis plan. However, no significant differences were shown in T2 SI ratio (p = 0.141), SNR (p = 0.093), CNR (p = 0.068), and SAR (p = 0.071) between these two sequences.
Conclusions: GraSE-STIR offers notable advantages over conventional STIR sequence, with improved image quality, reduced motion artifacts, and shorter acquisition times. These findings highlight the potential of GraSE-STIR as a valuable technique for routine clinical CMR imaging.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics