Shengxiao Wang, Chenyue Wang, Jun Zhang, Kan Jiang, Fang Nian
{"title":"作为入侵植物的矢车菊的同位异化作用和潜在的同位化学物质。","authors":"Shengxiao Wang, Chenyue Wang, Jun Zhang, Kan Jiang, Fang Nian","doi":"10.1080/15592324.2024.2335025","DOIUrl":null,"url":null,"abstract":"<p><p>Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of <i>Ligularia sagitta</i> on seed germination and seedling growth of four <i>Gramineae</i> forages (<i>Poa pratensis</i> L. <i>Festuca ovina</i> L. <i>Elymus nutans</i> Griseb. <i>Agropyron cristatum</i> (L.) Gaertn.) in their sympatric domains and one <i>Legosuminae</i> forage (<i>Medicago sativa</i> L.). The chemical components in each phase extract of <i>L. sagitta</i> were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four <i>Gramineae</i> forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. <i>P. pratensis</i> was most sensitive to <i>L. sagitta</i> extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of <i>P. pratensis</i> seeds were 0. <i>L. sagitta</i> extracts inhibited the growth of <i>M. sativa</i> seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in <i>L. sagitta</i>. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2335025"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Allelopathy and potential allelochemicals of <i>Ligularia sagitta</i> as an invasive plant.\",\"authors\":\"Shengxiao Wang, Chenyue Wang, Jun Zhang, Kan Jiang, Fang Nian\",\"doi\":\"10.1080/15592324.2024.2335025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of <i>Ligularia sagitta</i> on seed germination and seedling growth of four <i>Gramineae</i> forages (<i>Poa pratensis</i> L. <i>Festuca ovina</i> L. <i>Elymus nutans</i> Griseb. <i>Agropyron cristatum</i> (L.) Gaertn.) in their sympatric domains and one <i>Legosuminae</i> forage (<i>Medicago sativa</i> L.). The chemical components in each phase extract of <i>L. sagitta</i> were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four <i>Gramineae</i> forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. <i>P. pratensis</i> was most sensitive to <i>L. sagitta</i> extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of <i>P. pratensis</i> seeds were 0. <i>L. sagitta</i> extracts inhibited the growth of <i>M. sativa</i> seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in <i>L. sagitta</i>. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":\"19 1\",\"pages\":\"2335025\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2024.2335025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2335025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Allelopathy and potential allelochemicals of Ligularia sagitta as an invasive plant.
Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of Ligularia sagitta on seed germination and seedling growth of four Gramineae forages (Poa pratensis L. Festuca ovina L. Elymus nutans Griseb. Agropyron cristatum (L.) Gaertn.) in their sympatric domains and one Legosuminae forage (Medicago sativa L.). The chemical components in each phase extract of L. sagitta were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four Gramineae forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. P. pratensis was most sensitive to L. sagitta extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of P. pratensis seeds were 0. L. sagitta extracts inhibited the growth of M. sativa seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in L. sagitta. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.