Ju-Myung Lee, Jun-Ho Moon, Ji-Ae Park, Jong-Hak Kim, Shin-Jae Lee
{"title":"影响正畸领域人工智能发展的因素。","authors":"Ju-Myung Lee, Jun-Ho Moon, Ji-Ae Park, Jong-Hak Kim, Shin-Jae Lee","doi":"10.1111/ocr.12806","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Since developing AI procedures demands significant computing resources and time, the implementation of a careful experimental design is essential. The purpose of this study was to investigate factors influencing the development of AI in orthodontics.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>A total of 162 AI models were developed, with various combinations of sample sizes (170, 340, 679), input variables (40, 80, 160), output variables (38, 76, 154), training sessions (100, 500, 1000), and computer specifications (new vs. old). The TabNet deep-learning algorithm was used to develop these AI models, and leave-one-out cross-validation was applied in training. The goodness-of-fit of the regression models was compared using the adjusted coefficient of determination values, and the best-fit model was selected accordingly. Multiple linear regression analyses were employed to investigate the relationship between the influencing factors.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Increasing the number of training sessions enhanced the effectiveness of the AI models. The best-fit regression model for predicting the computational time of AI, which included logarithmic transformation of time, sample size, and training session variables, demonstrated an adjusted coefficient of determination of 0.99.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The study results show that estimating the time required for AI development may be possible using logarithmic transformations of time, sample size, and training session variables, followed by applying coefficients estimated through several pilot studies with reduced sample sizes and reduced training sessions.</p>\n </section>\n </div>","PeriodicalId":19652,"journal":{"name":"Orthodontics & Craniofacial Research","volume":"27 S2","pages":"6-12"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ocr.12806","citationCount":"0","resultStr":"{\"title\":\"Factors influencing the development of artificial intelligence in orthodontics\",\"authors\":\"Ju-Myung Lee, Jun-Ho Moon, Ji-Ae Park, Jong-Hak Kim, Shin-Jae Lee\",\"doi\":\"10.1111/ocr.12806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>Since developing AI procedures demands significant computing resources and time, the implementation of a careful experimental design is essential. The purpose of this study was to investigate factors influencing the development of AI in orthodontics.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>A total of 162 AI models were developed, with various combinations of sample sizes (170, 340, 679), input variables (40, 80, 160), output variables (38, 76, 154), training sessions (100, 500, 1000), and computer specifications (new vs. old). The TabNet deep-learning algorithm was used to develop these AI models, and leave-one-out cross-validation was applied in training. The goodness-of-fit of the regression models was compared using the adjusted coefficient of determination values, and the best-fit model was selected accordingly. Multiple linear regression analyses were employed to investigate the relationship between the influencing factors.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Increasing the number of training sessions enhanced the effectiveness of the AI models. The best-fit regression model for predicting the computational time of AI, which included logarithmic transformation of time, sample size, and training session variables, demonstrated an adjusted coefficient of determination of 0.99.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The study results show that estimating the time required for AI development may be possible using logarithmic transformations of time, sample size, and training session variables, followed by applying coefficients estimated through several pilot studies with reduced sample sizes and reduced training sessions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":19652,\"journal\":{\"name\":\"Orthodontics & Craniofacial Research\",\"volume\":\"27 S2\",\"pages\":\"6-12\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ocr.12806\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orthodontics & Craniofacial Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ocr.12806\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthodontics & Craniofacial Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ocr.12806","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Factors influencing the development of artificial intelligence in orthodontics
Objectives
Since developing AI procedures demands significant computing resources and time, the implementation of a careful experimental design is essential. The purpose of this study was to investigate factors influencing the development of AI in orthodontics.
Materials and Methods
A total of 162 AI models were developed, with various combinations of sample sizes (170, 340, 679), input variables (40, 80, 160), output variables (38, 76, 154), training sessions (100, 500, 1000), and computer specifications (new vs. old). The TabNet deep-learning algorithm was used to develop these AI models, and leave-one-out cross-validation was applied in training. The goodness-of-fit of the regression models was compared using the adjusted coefficient of determination values, and the best-fit model was selected accordingly. Multiple linear regression analyses were employed to investigate the relationship between the influencing factors.
Results
Increasing the number of training sessions enhanced the effectiveness of the AI models. The best-fit regression model for predicting the computational time of AI, which included logarithmic transformation of time, sample size, and training session variables, demonstrated an adjusted coefficient of determination of 0.99.
Conclusion
The study results show that estimating the time required for AI development may be possible using logarithmic transformations of time, sample size, and training session variables, followed by applying coefficients estimated through several pilot studies with reduced sample sizes and reduced training sessions.
期刊介绍:
Orthodontics & Craniofacial Research - Genes, Growth and Development is published to serve its readers as an international forum for the presentation and critical discussion of issues pertinent to the advancement of the specialty of orthodontics and the evidence-based knowledge of craniofacial growth and development. This forum is based on scientifically supported information, but also includes minority and conflicting opinions.
The objective of the journal is to facilitate effective communication between the research community and practicing clinicians. Original papers of high scientific quality that report the findings of clinical trials, clinical epidemiology, and novel therapeutic or diagnostic approaches are appropriate submissions. Similarly, we welcome papers in genetics, developmental biology, syndromology, surgery, speech and hearing, and other biomedical disciplines related to clinical orthodontics and normal and abnormal craniofacial growth and development. In addition to original and basic research, the journal publishes concise reviews, case reports of substantial value, invited essays, letters, and announcements.
The journal is published quarterly. The review of submitted papers will be coordinated by the editor and members of the editorial board. It is policy to review manuscripts within 3 to 4 weeks of receipt and to publish within 3 to 6 months of acceptance.