{"title":"典型性和实例依赖性标签降噪:为内窥镜息肉分类模拟和消除真实世界噪声标签的新型框架。","authors":"Yun Gao, Junhu Fu, Yuanyuan Wang, Yi Guo","doi":"10.1186/s42492-024-00162-x","DOIUrl":null,"url":null,"abstract":"<p><p>Learning with noisy labels aims to train neural networks with noisy labels. Current models handle instance-independent label noise (IIN) well; however, they fall short with real-world noise. In medical image classification, atypical samples frequently receive incorrect labels, rendering instance-dependent label noise (IDN) an accurate representation of real-world scenarios. However, the current IDN approaches fail to consider the typicality of samples, which hampers their ability to address real-world label noise effectively. To alleviate the issues, we introduce typicality- and instance-dependent label noise (TIDN) to simulate real-world noise and establish a TIDN-combating framework to combat label noise. Specifically, we use the sample's distance to decision boundaries in the feature space to represent typicality. The TIDN is then generated according to typicality. We establish a TIDN-attention module to combat label noise and learn the transition matrix from latent ground truth to the observed noisy labels. A recursive algorithm that enables the network to make correct predictions with corrections from the learned transition matrix is proposed. Our experiments demonstrate that the TIDN simulates real-world noise more closely than the existing IIN and IDN. Furthermore, the TIDN-combating framework demonstrates superior classification performance when training with simulated TIDN and actual real-world noise.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074096/pdf/","citationCount":"0","resultStr":"{\"title\":\"Typicality- and instance-dependent label noise-combating: a novel framework for simulating and combating real-world noisy labels for endoscopic polyp classification.\",\"authors\":\"Yun Gao, Junhu Fu, Yuanyuan Wang, Yi Guo\",\"doi\":\"10.1186/s42492-024-00162-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Learning with noisy labels aims to train neural networks with noisy labels. Current models handle instance-independent label noise (IIN) well; however, they fall short with real-world noise. In medical image classification, atypical samples frequently receive incorrect labels, rendering instance-dependent label noise (IDN) an accurate representation of real-world scenarios. However, the current IDN approaches fail to consider the typicality of samples, which hampers their ability to address real-world label noise effectively. To alleviate the issues, we introduce typicality- and instance-dependent label noise (TIDN) to simulate real-world noise and establish a TIDN-combating framework to combat label noise. Specifically, we use the sample's distance to decision boundaries in the feature space to represent typicality. The TIDN is then generated according to typicality. We establish a TIDN-attention module to combat label noise and learn the transition matrix from latent ground truth to the observed noisy labels. A recursive algorithm that enables the network to make correct predictions with corrections from the learned transition matrix is proposed. Our experiments demonstrate that the TIDN simulates real-world noise more closely than the existing IIN and IDN. Furthermore, the TIDN-combating framework demonstrates superior classification performance when training with simulated TIDN and actual real-world noise.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074096/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-024-00162-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00162-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Typicality- and instance-dependent label noise-combating: a novel framework for simulating and combating real-world noisy labels for endoscopic polyp classification.
Learning with noisy labels aims to train neural networks with noisy labels. Current models handle instance-independent label noise (IIN) well; however, they fall short with real-world noise. In medical image classification, atypical samples frequently receive incorrect labels, rendering instance-dependent label noise (IDN) an accurate representation of real-world scenarios. However, the current IDN approaches fail to consider the typicality of samples, which hampers their ability to address real-world label noise effectively. To alleviate the issues, we introduce typicality- and instance-dependent label noise (TIDN) to simulate real-world noise and establish a TIDN-combating framework to combat label noise. Specifically, we use the sample's distance to decision boundaries in the feature space to represent typicality. The TIDN is then generated according to typicality. We establish a TIDN-attention module to combat label noise and learn the transition matrix from latent ground truth to the observed noisy labels. A recursive algorithm that enables the network to make correct predictions with corrections from the learned transition matrix is proposed. Our experiments demonstrate that the TIDN simulates real-world noise more closely than the existing IIN and IDN. Furthermore, the TIDN-combating framework demonstrates superior classification performance when training with simulated TIDN and actual real-world noise.