Susana Carrizosa-Botero, Tatiana A Roldán-Rojo, Elizabeth Rendón-Vélez
{"title":"确定认知、热和综合(认知-热)压力条件的生理指标。","authors":"Susana Carrizosa-Botero, Tatiana A Roldán-Rojo, Elizabeth Rendón-Vélez","doi":"10.1111/psyp.14601","DOIUrl":null,"url":null,"abstract":"<p><p>Physiologically based stress detection systems have proven to be effective in identifying different stress conditions in the body to determine the source of stress and be able to counteract it. However, some stress conditions have not been widely studied, including thermal stress, cognitive stress, and combined (thermal-cognitive) stress conditions, which are frequently encountered in work or school environments. In order to develop systems to detect and differentiate these conditions, it is necessary to identify the physiological indicators that characterize each of them. The present research aims to identify which physiological indicators (heart rate, respiratory rate, galvanic skin response, and local temperature) could differentiate different stress conditions (no-stress, cognitive stress, thermal stress, and combined (thermal-cognitive) stress conditions). Thirty participants were exposed to cognitive, thermal, and combined stress sources while recording their physiological signals. The findings indicate that both mean heart rate and mean galvanic skin response identify moderate thermal and cognitive stress conditions as distinct from a no-stress condition, yet they do not differentiate between the two stress conditions. Additionally, heart rate uniquely identifies the cognitive-thermal stress condition, effectively distinguishing this combined stress condition from the singular stress conditions and the no-stress condition. Mean local temperature specifically signals thermal stress conditions, whereas mean respiratory rate accurately identifies cognitive stress conditions, with both indicators effectively separating these conditions from each other and from the no-stress condition. This is the first basis for differentiating thermal and cognitive stress conditions through physiological indicators.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying physiological indicators of the cognitive, thermal, and combined (cognitive-thermal) stress conditions.\",\"authors\":\"Susana Carrizosa-Botero, Tatiana A Roldán-Rojo, Elizabeth Rendón-Vélez\",\"doi\":\"10.1111/psyp.14601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physiologically based stress detection systems have proven to be effective in identifying different stress conditions in the body to determine the source of stress and be able to counteract it. However, some stress conditions have not been widely studied, including thermal stress, cognitive stress, and combined (thermal-cognitive) stress conditions, which are frequently encountered in work or school environments. In order to develop systems to detect and differentiate these conditions, it is necessary to identify the physiological indicators that characterize each of them. The present research aims to identify which physiological indicators (heart rate, respiratory rate, galvanic skin response, and local temperature) could differentiate different stress conditions (no-stress, cognitive stress, thermal stress, and combined (thermal-cognitive) stress conditions). Thirty participants were exposed to cognitive, thermal, and combined stress sources while recording their physiological signals. The findings indicate that both mean heart rate and mean galvanic skin response identify moderate thermal and cognitive stress conditions as distinct from a no-stress condition, yet they do not differentiate between the two stress conditions. Additionally, heart rate uniquely identifies the cognitive-thermal stress condition, effectively distinguishing this combined stress condition from the singular stress conditions and the no-stress condition. Mean local temperature specifically signals thermal stress conditions, whereas mean respiratory rate accurately identifies cognitive stress conditions, with both indicators effectively separating these conditions from each other and from the no-stress condition. This is the first basis for differentiating thermal and cognitive stress conditions through physiological indicators.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14601\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14601","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Identifying physiological indicators of the cognitive, thermal, and combined (cognitive-thermal) stress conditions.
Physiologically based stress detection systems have proven to be effective in identifying different stress conditions in the body to determine the source of stress and be able to counteract it. However, some stress conditions have not been widely studied, including thermal stress, cognitive stress, and combined (thermal-cognitive) stress conditions, which are frequently encountered in work or school environments. In order to develop systems to detect and differentiate these conditions, it is necessary to identify the physiological indicators that characterize each of them. The present research aims to identify which physiological indicators (heart rate, respiratory rate, galvanic skin response, and local temperature) could differentiate different stress conditions (no-stress, cognitive stress, thermal stress, and combined (thermal-cognitive) stress conditions). Thirty participants were exposed to cognitive, thermal, and combined stress sources while recording their physiological signals. The findings indicate that both mean heart rate and mean galvanic skin response identify moderate thermal and cognitive stress conditions as distinct from a no-stress condition, yet they do not differentiate between the two stress conditions. Additionally, heart rate uniquely identifies the cognitive-thermal stress condition, effectively distinguishing this combined stress condition from the singular stress conditions and the no-stress condition. Mean local temperature specifically signals thermal stress conditions, whereas mean respiratory rate accurately identifies cognitive stress conditions, with both indicators effectively separating these conditions from each other and from the no-stress condition. This is the first basis for differentiating thermal and cognitive stress conditions through physiological indicators.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.