Xiao-Dong Wang, Jin-Feng Ma, Hao-Rui Jiang, Yu An, Mei Zhang
{"title":"基于不同分辨率的中国东北三环豹湿地水体脱氮空间差异。","authors":"Xiao-Dong Wang, Jin-Feng Ma, Hao-Rui Jiang, Yu An, Mei Zhang","doi":"10.1002/wer.11034","DOIUrl":null,"url":null,"abstract":"<p><p>The research on the deviations caused by different resolutions is relevant to the study of spatial scale effects. In 2018, spatial interpolations were performed using the removal ratios of the TN, NH<sub>4</sub>-N, and NO<sub>3</sub>-N of the layers of different resolutions, respectively. Based on the mean and the standard deviation, the area, shape, and position were obtained for four levels related to the removal ratios of the three nitrogen forms. The linear and 6th function fitting methods were used to reveal the differences in nitrogen removal in wetland water at different spatial resolutions. The results showed that a resolution of 25 times the original was the key scale of the spatial effects. Due to the fact that 52 of the 72 functions did not reach a significant level (P < 0.05), the spatial scale effect of the nitrogen removal was mainly characterized by disorderly fluctuations. The results have a certain extrapolation value for the analysis of spatial scale effects. PRACTITIONER POINTS: The resolution difference was not sufficient to change the spatial pattern of the geographic phenomena. The resolution of 25 times the original was the important scale for determining spatial effects. When studying the spatial scale effects caused by differences in resolution, it was necessary to comprehensively consider various resolutions.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial difference on nitrogen removal in the water based on different resolutions for Sanhuanpao wetland, Northeast China.\",\"authors\":\"Xiao-Dong Wang, Jin-Feng Ma, Hao-Rui Jiang, Yu An, Mei Zhang\",\"doi\":\"10.1002/wer.11034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The research on the deviations caused by different resolutions is relevant to the study of spatial scale effects. In 2018, spatial interpolations were performed using the removal ratios of the TN, NH<sub>4</sub>-N, and NO<sub>3</sub>-N of the layers of different resolutions, respectively. Based on the mean and the standard deviation, the area, shape, and position were obtained for four levels related to the removal ratios of the three nitrogen forms. The linear and 6th function fitting methods were used to reveal the differences in nitrogen removal in wetland water at different spatial resolutions. The results showed that a resolution of 25 times the original was the key scale of the spatial effects. Due to the fact that 52 of the 72 functions did not reach a significant level (P < 0.05), the spatial scale effect of the nitrogen removal was mainly characterized by disorderly fluctuations. The results have a certain extrapolation value for the analysis of spatial scale effects. PRACTITIONER POINTS: The resolution difference was not sufficient to change the spatial pattern of the geographic phenomena. The resolution of 25 times the original was the important scale for determining spatial effects. When studying the spatial scale effects caused by differences in resolution, it was necessary to comprehensively consider various resolutions.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.11034\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11034","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Spatial difference on nitrogen removal in the water based on different resolutions for Sanhuanpao wetland, Northeast China.
The research on the deviations caused by different resolutions is relevant to the study of spatial scale effects. In 2018, spatial interpolations were performed using the removal ratios of the TN, NH4-N, and NO3-N of the layers of different resolutions, respectively. Based on the mean and the standard deviation, the area, shape, and position were obtained for four levels related to the removal ratios of the three nitrogen forms. The linear and 6th function fitting methods were used to reveal the differences in nitrogen removal in wetland water at different spatial resolutions. The results showed that a resolution of 25 times the original was the key scale of the spatial effects. Due to the fact that 52 of the 72 functions did not reach a significant level (P < 0.05), the spatial scale effect of the nitrogen removal was mainly characterized by disorderly fluctuations. The results have a certain extrapolation value for the analysis of spatial scale effects. PRACTITIONER POINTS: The resolution difference was not sufficient to change the spatial pattern of the geographic phenomena. The resolution of 25 times the original was the important scale for determining spatial effects. When studying the spatial scale effects caused by differences in resolution, it was necessary to comprehensively consider various resolutions.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.