实验室衍射对比断层扫描的后处理工作流程:铬铁矿地质材料案例研究。

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiao Chen, Belinda Godel, Michael Verrall
{"title":"实验室衍射对比断层扫描的后处理工作流程:铬铁矿地质材料案例研究。","authors":"Xiao Chen, Belinda Godel, Michael Verrall","doi":"10.1093/mam/ozae036","DOIUrl":null,"url":null,"abstract":"<p><p>Texture stands as a fundamental descriptor in the realms of geology and earth and planetary science. Beyond offering insights into the geological processes underlying mineral formation, its characterization plays a pivotal role in advancing engineering applications, notably in mining, mineral processing, and metal extraction, by providing quantitative data for predictive modeling. Laboratory diffraction contrast tomography (LabDCT), a recently developed 3D characterization technique, offers nondestructive measurement of grain phases including their morphology, distribution, and crystal orientation. It has recently shown its potential to assess 3D textures in complex natural rock samples. This study looks at improving on previous work by examining the artifacts and presents a novel postprocessing workflow designed to correct them. The workflow is developed to rectify inaccurate grain boundaries and interpolate partially reconstructed grains to provide more accurate results and is illustrated using multi-scan examples on chromite sands and natural chromitite from the Upper Group 2 Reef layer in South Africa. The postcorrected LabDCT results were validated through qualitative and quantitative assessment using 2D electron back-scattered diffraction on polished sample surfaces. The successful implementation of this postprocessing workflow underscores its substantial potential in achieving precise textural characterization and will provide valuable insights for both earth science and engineering applications.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Postprocessing Workflow for Laboratory Diffraction Contrast Tomography: A Case Study on Chromite Geomaterials.\",\"authors\":\"Xiao Chen, Belinda Godel, Michael Verrall\",\"doi\":\"10.1093/mam/ozae036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Texture stands as a fundamental descriptor in the realms of geology and earth and planetary science. Beyond offering insights into the geological processes underlying mineral formation, its characterization plays a pivotal role in advancing engineering applications, notably in mining, mineral processing, and metal extraction, by providing quantitative data for predictive modeling. Laboratory diffraction contrast tomography (LabDCT), a recently developed 3D characterization technique, offers nondestructive measurement of grain phases including their morphology, distribution, and crystal orientation. It has recently shown its potential to assess 3D textures in complex natural rock samples. This study looks at improving on previous work by examining the artifacts and presents a novel postprocessing workflow designed to correct them. The workflow is developed to rectify inaccurate grain boundaries and interpolate partially reconstructed grains to provide more accurate results and is illustrated using multi-scan examples on chromite sands and natural chromitite from the Upper Group 2 Reef layer in South Africa. The postcorrected LabDCT results were validated through qualitative and quantitative assessment using 2D electron back-scattered diffraction on polished sample surfaces. The successful implementation of this postprocessing workflow underscores its substantial potential in achieving precise textural characterization and will provide valuable insights for both earth science and engineering applications.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozae036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纹理是地质学、地球和行星科学领域的基本描述指标。除了深入了解矿物形成的地质过程外,纹理特征描述还为预测建模提供了定量数据,在推进工程应用(尤其是采矿、矿物加工和金属提取)方面发挥着关键作用。实验室衍射对比断层扫描(LabDCT)是最近开发的一种三维表征技术,可对晶粒相进行无损测量,包括其形态、分布和晶体取向。该技术最近显示出了评估复杂天然岩石样本三维纹理的潜力。本研究通过对人工痕迹的研究,对之前的工作进行了改进,并提出了一种新颖的后处理工作流程,旨在纠正人工痕迹。该工作流程用于纠正不准确的晶粒边界,并对部分重建的晶粒进行插值,以提供更准确的结果,并使用南非上2组礁石层铬铁矿砂和天然铬铁矿的多扫描示例进行了说明。通过对抛光样品表面的二维电子反向散射衍射进行定性和定量评估,对 LabDCT 后校正结果进行了验证。这种后处理工作流程的成功实施,凸显了其在实现精确纹理表征方面的巨大潜力,并将为地球科学和工程应用提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Postprocessing Workflow for Laboratory Diffraction Contrast Tomography: A Case Study on Chromite Geomaterials.

Texture stands as a fundamental descriptor in the realms of geology and earth and planetary science. Beyond offering insights into the geological processes underlying mineral formation, its characterization plays a pivotal role in advancing engineering applications, notably in mining, mineral processing, and metal extraction, by providing quantitative data for predictive modeling. Laboratory diffraction contrast tomography (LabDCT), a recently developed 3D characterization technique, offers nondestructive measurement of grain phases including their morphology, distribution, and crystal orientation. It has recently shown its potential to assess 3D textures in complex natural rock samples. This study looks at improving on previous work by examining the artifacts and presents a novel postprocessing workflow designed to correct them. The workflow is developed to rectify inaccurate grain boundaries and interpolate partially reconstructed grains to provide more accurate results and is illustrated using multi-scan examples on chromite sands and natural chromitite from the Upper Group 2 Reef layer in South Africa. The postcorrected LabDCT results were validated through qualitative and quantitative assessment using 2D electron back-scattered diffraction on polished sample surfaces. The successful implementation of this postprocessing workflow underscores its substantial potential in achieving precise textural characterization and will provide valuable insights for both earth science and engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信