Zaiwei Wang, Amy Martin, Dianne Brunton, Cyril C Grueter, Jiapeng Qu, Jin-Sheng He, Weihong Ji, Zhibiao Nan
{"title":"草原退化对一种小型哺乳动物遗传结构的影响。","authors":"Zaiwei Wang, Amy Martin, Dianne Brunton, Cyril C Grueter, Jiapeng Qu, Jin-Sheng He, Weihong Ji, Zhibiao Nan","doi":"10.1111/1749-4877.12836","DOIUrl":null,"url":null,"abstract":"<p><p>Grassland degradation is challenging the health of grassland ecosystems globally and causing biodiversity decline. Previous studies have demonstrated the impact of grassland degradation on the abundance and behavior of small mammals. Little is known about how it affects the genetic structure of gregarious mammals in the wild. This study explores the effects of grassland degradation on the genetic structure of a small burrowing mammal, plateau pika (Ochotona curzoniae). We used nine microsatellite loci to analyze the genetic diversity and genetic differentiation between colonies and genetic relatedness between individuals within the colony. We found that pikas in severely degraded grasslands had a significantly higher genetic diversity within colonies, a higher level of gene flow between colonies, and a lower genetic differentiation between colonies compared to pikas in less degraded grasslands. Individuals within colonies had a significantly lower genetic relatedness in severely degraded grasslands than in less degraded grasslands. This study has provided potential evidence of a significant impact of grassland degradation on the genetic structure of pikas, which has caused a breakdown of their kin-selected colony structure.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of grassland degradation on the genetic structure of a small mammal.\",\"authors\":\"Zaiwei Wang, Amy Martin, Dianne Brunton, Cyril C Grueter, Jiapeng Qu, Jin-Sheng He, Weihong Ji, Zhibiao Nan\",\"doi\":\"10.1111/1749-4877.12836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grassland degradation is challenging the health of grassland ecosystems globally and causing biodiversity decline. Previous studies have demonstrated the impact of grassland degradation on the abundance and behavior of small mammals. Little is known about how it affects the genetic structure of gregarious mammals in the wild. This study explores the effects of grassland degradation on the genetic structure of a small burrowing mammal, plateau pika (Ochotona curzoniae). We used nine microsatellite loci to analyze the genetic diversity and genetic differentiation between colonies and genetic relatedness between individuals within the colony. We found that pikas in severely degraded grasslands had a significantly higher genetic diversity within colonies, a higher level of gene flow between colonies, and a lower genetic differentiation between colonies compared to pikas in less degraded grasslands. Individuals within colonies had a significantly lower genetic relatedness in severely degraded grasslands than in less degraded grasslands. This study has provided potential evidence of a significant impact of grassland degradation on the genetic structure of pikas, which has caused a breakdown of their kin-selected colony structure.</p>\",\"PeriodicalId\":13654,\"journal\":{\"name\":\"Integrative zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1749-4877.12836\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12836","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
The effects of grassland degradation on the genetic structure of a small mammal.
Grassland degradation is challenging the health of grassland ecosystems globally and causing biodiversity decline. Previous studies have demonstrated the impact of grassland degradation on the abundance and behavior of small mammals. Little is known about how it affects the genetic structure of gregarious mammals in the wild. This study explores the effects of grassland degradation on the genetic structure of a small burrowing mammal, plateau pika (Ochotona curzoniae). We used nine microsatellite loci to analyze the genetic diversity and genetic differentiation between colonies and genetic relatedness between individuals within the colony. We found that pikas in severely degraded grasslands had a significantly higher genetic diversity within colonies, a higher level of gene flow between colonies, and a lower genetic differentiation between colonies compared to pikas in less degraded grasslands. Individuals within colonies had a significantly lower genetic relatedness in severely degraded grasslands than in less degraded grasslands. This study has provided potential evidence of a significant impact of grassland degradation on the genetic structure of pikas, which has caused a breakdown of their kin-selected colony structure.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations