Junxiu Nong, Shengqiang Shen, Fan Hong, Fan Xiao, Lingtian Meng, Pilong Li, Xiaoguang Lei, Ye-Guang Chen
{"title":"Verteporfin 通过破坏 Smad2/3-Smad4 的相互作用来抑制 TGF-β 信号传导。","authors":"Junxiu Nong, Shengqiang Shen, Fan Hong, Fan Xiao, Lingtian Meng, Pilong Li, Xiaoguang Lei, Ye-Guang Chen","doi":"10.1091/mbc.E24-02-0073","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor-β (TGF-β) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. Targeting TGF-β signaling is a promising therapeutic approach, but nonspecific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-β signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-β signaling, but not the interaction between Smad1 and Smad4 in bone morphogenetic protein (BMP) signaling. Furthermore, VP exhibited inhibitory effects on TGF-β-induced EMT and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-β signaling pathway for treatments of related diseases.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244160/pdf/","citationCount":"0","resultStr":"{\"title\":\"Verteporfin inhibits TGF-β signaling by disrupting the Smad2/3-Smad4 interaction.\",\"authors\":\"Junxiu Nong, Shengqiang Shen, Fan Hong, Fan Xiao, Lingtian Meng, Pilong Li, Xiaoguang Lei, Ye-Guang Chen\",\"doi\":\"10.1091/mbc.E24-02-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transforming growth factor-β (TGF-β) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. Targeting TGF-β signaling is a promising therapeutic approach, but nonspecific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-β signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-β signaling, but not the interaction between Smad1 and Smad4 in bone morphogenetic protein (BMP) signaling. Furthermore, VP exhibited inhibitory effects on TGF-β-induced EMT and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-β signaling pathway for treatments of related diseases.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244160/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E24-02-0073\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-02-0073","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Verteporfin inhibits TGF-β signaling by disrupting the Smad2/3-Smad4 interaction.
Transforming growth factor-β (TGF-β) signaling plays a crucial role in pathogenesis, such as accelerating tissue fibrosis and promoting tumor development at the later stages of tumorigenesis by promoting epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. Targeting TGF-β signaling is a promising therapeutic approach, but nonspecific inhibition may result in adverse effects. In this study, we focus on the Smad2/3-Smad4 complex, a key component in TGF-β signaling transduction, as a potential target for cancer therapy. Through a phase-separated condensate-aided biomolecular interaction system, we identified verteporfin (VP) as a small-molecule inhibitor that specifically targets the Smad2/3-Smad4 interaction. VP effectively disrupted the interaction between Smad2/3 and Smad4 and thereby inhibited canonical TGF-β signaling, but not the interaction between Smad1 and Smad4 in bone morphogenetic protein (BMP) signaling. Furthermore, VP exhibited inhibitory effects on TGF-β-induced EMT and cell migration. Our findings indicate a novel approach to develop protein-protein interaction inhibitors of the canonical TGF-β signaling pathway for treatments of related diseases.