Abdulrahman Alshabib, Carlos A Jurado, Francisco X Azpiazu-Flores, Khalid Aldosary, Akimasa Tsujimoto, Hamad Algamaiah
{"title":"树脂基芯材和短纤维增强可流动树脂基复合材料的机械性能和转化程度。","authors":"Abdulrahman Alshabib, Carlos A Jurado, Francisco X Azpiazu-Flores, Khalid Aldosary, Akimasa Tsujimoto, Hamad Algamaiah","doi":"10.4012/dmj.2023-207","DOIUrl":null,"url":null,"abstract":"<p><p>To evaluate the degree of conversion (DC), surface hardness (SH), and flexural strength (FS) of resin-based core build-up materials. Core build-up materials used were: MultiCore Flow (MCF); Activa (ACT); Core-X Flow (CXF); and everX flow (EVX), and DC, SH and FS were measured. An increase of DC was identified for all materials post-cure, except for EVX. The DC change percentage ranged from 5%-33%, and EVX was displayed the greatest DC rate. All materials displayed an SH increase after 30 days and the greatest increase was observed in ACT. At 1 h, the SH of EVX and CXF was different from the other materials. At 30 days, MCF displayed the greatest SH. All materials displayed an increase in their FS after 30 days except for EVX, and ranging 3%-36% were noticed. Differences observed between materials, thus clinician should be acquainted mechanical properties of these materials to ensure the success of the restorations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties and degree of conversion of resin-based core build-up materials and short fiber-reinforced flowable resin-based composite.\",\"authors\":\"Abdulrahman Alshabib, Carlos A Jurado, Francisco X Azpiazu-Flores, Khalid Aldosary, Akimasa Tsujimoto, Hamad Algamaiah\",\"doi\":\"10.4012/dmj.2023-207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To evaluate the degree of conversion (DC), surface hardness (SH), and flexural strength (FS) of resin-based core build-up materials. Core build-up materials used were: MultiCore Flow (MCF); Activa (ACT); Core-X Flow (CXF); and everX flow (EVX), and DC, SH and FS were measured. An increase of DC was identified for all materials post-cure, except for EVX. The DC change percentage ranged from 5%-33%, and EVX was displayed the greatest DC rate. All materials displayed an SH increase after 30 days and the greatest increase was observed in ACT. At 1 h, the SH of EVX and CXF was different from the other materials. At 30 days, MCF displayed the greatest SH. All materials displayed an increase in their FS after 30 days except for EVX, and ranging 3%-36% were noticed. Differences observed between materials, thus clinician should be acquainted mechanical properties of these materials to ensure the success of the restorations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4012/dmj.2023-207\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-207","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical properties and degree of conversion of resin-based core build-up materials and short fiber-reinforced flowable resin-based composite.
To evaluate the degree of conversion (DC), surface hardness (SH), and flexural strength (FS) of resin-based core build-up materials. Core build-up materials used were: MultiCore Flow (MCF); Activa (ACT); Core-X Flow (CXF); and everX flow (EVX), and DC, SH and FS were measured. An increase of DC was identified for all materials post-cure, except for EVX. The DC change percentage ranged from 5%-33%, and EVX was displayed the greatest DC rate. All materials displayed an SH increase after 30 days and the greatest increase was observed in ACT. At 1 h, the SH of EVX and CXF was different from the other materials. At 30 days, MCF displayed the greatest SH. All materials displayed an increase in their FS after 30 days except for EVX, and ranging 3%-36% were noticed. Differences observed between materials, thus clinician should be acquainted mechanical properties of these materials to ensure the success of the restorations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.